Formats: - HTML - YAML - JSON - 2026-01-30T21:08:49.638368
Query: /api/av_fq_isog/?_offset=0
Show schema

{'abvar_count': 6162, 'abvar_counts': [6162, 37970244, 243088441362, 1517582713594896, 9468276079746974802, 59091990323806512415044, 368790120348657508089657042, 2301619265224244143865856000000, 14364405059580771821459037022621842, 89648251922308741540342694070822939204], 'abvar_counts_str': '6162 37970244 243088441362 1517582713594896 9468276079746974802 59091990323806512415044 368790120348657508089657042 2301619265224244143865856000000 14364405059580771821459037022621842 89648251922308741540342694070822939204 ', 'angle_corank': 1, 'angle_rank': 1, 'angles': [0.165501050790641, 0.834498949209359], 'center_dim': 4, 'cohen_macaulay_max': 1, 'curve_count': 80, 'curve_counts': [80, 6082, 493040, 38962246, 3077056400, 243089427202, 19203908986160, 1517108891725438, 119851595982618320, 9468276076867102402], 'curve_counts_str': '80 6082 493040 38962246 3077056400 243089427202 19203908986160 1517108891725438 119851595982618320 9468276076867102402 ', 'curves': ['y^2=2*x^6+25*x^5+73*x^4+21*x^3+30*x^2+55*x+36', 'y^2=6*x^6+75*x^5+61*x^4+63*x^3+11*x^2+7*x+29', 'y^2=5*x^6+28*x^5+56*x^4+40*x^3+27*x^2+64*x+48', 'y^2=15*x^6+5*x^5+10*x^4+41*x^3+2*x^2+34*x+65', 'y^2=28*x^6+59*x^5+55*x^4+21*x^3+6*x^2+24*x+18', 'y^2=5*x^6+19*x^5+7*x^4+63*x^3+18*x^2+72*x+54', 'y^2=31*x^6+45*x^5+33*x^4+14*x^3+69*x^2+60*x+25', 'y^2=14*x^6+56*x^5+20*x^4+42*x^3+49*x^2+22*x+75', 'y^2=46*x^6+23*x^5+36*x^4+20*x^3+74*x^2+32*x+40', 'y^2=59*x^6+69*x^5+29*x^4+60*x^3+64*x^2+17*x+41', 'y^2=13*x^6+40*x^5+19*x^4+11*x^3+76*x^2+32*x+49', 'y^2=39*x^6+41*x^5+57*x^4+33*x^3+70*x^2+17*x+68', 'y^2=42*x^6+59*x^5+37*x^4+36*x^3+9*x^2+26*x+5', 'y^2=47*x^6+19*x^5+32*x^4+29*x^3+27*x^2+78*x+15', 'y^2=24*x^6+69*x^5+72*x^4+8*x^3+69*x^2+26*x+28', 'y^2=72*x^6+49*x^5+58*x^4+24*x^3+49*x^2+78*x+5', 'y^2=25*x^6+43*x^5+72*x^4+42*x^3+27*x^2+71*x+72', 'y^2=75*x^6+50*x^5+58*x^4+47*x^3+2*x^2+55*x+58', 'y^2=33*x^6+52*x^5+45*x^4+66*x^3+14*x^2+61*x+12', 'y^2=20*x^6+77*x^5+56*x^4+40*x^3+42*x^2+25*x+36', 'y^2=49*x^6+26*x^5+11*x^4+29*x^3+26*x^2+40*x+20', 'y^2=68*x^6+78*x^5+33*x^4+8*x^3+78*x^2+41*x+60', 'y^2=28*x^6+69*x^5+12*x^4+16*x^3+4*x^2+68*x+39', 'y^2=5*x^6+49*x^5+36*x^4+48*x^3+12*x^2+46*x+38', 'y^2=49*x^6+28*x^5+43*x^4+11*x^3+47*x^2+69*x+45', 'y^2=68*x^6+5*x^5+50*x^4+33*x^3+62*x^2+49*x+56', 'y^2=37*x^6+45*x^5+32*x^4+59*x^3+28*x^2+58*x+75', 'y^2=32*x^6+56*x^5+17*x^4+19*x^3+5*x^2+16*x+67', 'y^2=63*x^6+x^5+43*x^4+52*x^3+22*x^2+22*x+11', 'y^2=31*x^6+3*x^5+50*x^4+77*x^3+66*x^2+66*x+33', 'y^2=68*x^6+72*x^5+36*x^4+75*x^3+19*x^2+4*x+49', 'y^2=46*x^6+58*x^5+29*x^4+67*x^3+57*x^2+12*x+68', 'y^2=16*x^6+53*x^5+73*x^4+29*x^3+27*x^2+48*x+28', 'y^2=48*x^6+x^5+61*x^4+8*x^3+2*x^2+65*x+5', 'y^2=53*x^6+32*x^5+46*x^4+72*x^3+60*x^2+10*x+31', 'y^2=x^6+17*x^5+59*x^4+58*x^3+22*x^2+30*x+14', 'y^2=62*x^6+76*x^5+76*x^4+54*x^3+18*x^2+7*x+49', 'y^2=28*x^6+70*x^5+70*x^4+4*x^3+54*x^2+21*x+68', 'y^2=56*x^6+7*x^5+13*x^4+20*x^3+20*x^2+15*x+64', 'y^2=10*x^6+21*x^5+39*x^4+60*x^3+60*x^2+45*x+34', 'y^2=44*x^6+30*x^5+46*x^4+50*x^3+37*x^2+9*x+53', 'y^2=53*x^6+11*x^5+59*x^4+71*x^3+32*x^2+27*x+1', 'y^2=21*x^6+30*x^5+18*x^4+64*x^3+58*x^2+21*x+48', 'y^2=63*x^6+11*x^5+54*x^4+34*x^3+16*x^2+63*x+65', 'y^2=68*x^6+39*x^5+67*x^4+42*x^3+39*x^2+51*x+28', 'y^2=46*x^6+38*x^5+43*x^4+47*x^3+38*x^2+74*x+5', 'y^2=58*x^6+47*x^5+53*x^4+60*x^3+56*x^2+2*x+8', 'y^2=16*x^6+62*x^5+x^4+22*x^3+10*x^2+6*x+24', 'y^2=75*x^6+62*x^5+38*x^4+33*x^3+42*x^2+43*x+37', 'y^2=67*x^6+28*x^5+35*x^4+20*x^3+47*x^2+50*x+32', 'y^2=49*x^6+75*x^5+36*x^4+57*x^3+53*x^2+36*x+53', 'y^2=68*x^6+67*x^5+29*x^4+13*x^3+x^2+29*x+1', 'y^2=13*x^6+69*x^5+73*x^4+72*x^3+53*x^2+7*x+18', 'y^2=39*x^6+49*x^5+61*x^4+58*x^3+x^2+21*x+54', 'y^2=24*x^6+48*x^5+17*x^4+25*x^3+65*x^2+73*x+31', 'y^2=72*x^6+65*x^5+51*x^4+75*x^3+37*x^2+61*x+14', 'y^2=71*x^6+34*x^5+33*x^4+43*x^3+70*x^2+30*x+73', 'y^2=55*x^6+23*x^5+20*x^4+50*x^3+52*x^2+11*x+61', 'y^2=13*x^6+59*x^5+44*x^4+55*x^3+42*x^2+68*x+18', 'y^2=39*x^6+19*x^5+53*x^4+7*x^3+47*x^2+46*x+54', 'y^2=57*x^6+73*x^5+20*x^4+6*x^3+21*x^2+7*x+51', 'y^2=13*x^6+61*x^5+60*x^4+18*x^3+63*x^2+21*x+74', 'y^2=13*x^6+69*x^5+47*x^4+39*x^3+66*x^2+40*x+70', 'y^2=39*x^6+49*x^5+62*x^4+38*x^3+40*x^2+41*x+52', 'y^2=9*x^6+33*x^5+72*x^4+47*x^3+68*x^2+78*x+26', 'y^2=27*x^6+20*x^5+58*x^4+62*x^3+46*x^2+76*x+78', 'y^2=41*x^6+19*x^5+72*x^4+54*x^3+77*x^2+63*x+36', 'y^2=44*x^6+57*x^5+58*x^4+4*x^3+73*x^2+31*x+29', 'y^2=15*x^6+53*x^5+59*x^4+3*x^2+26*x+69', 'y^2=45*x^6+x^5+19*x^4+9*x^2+78*x+49', 'y^2=34*x^6+51*x^5+10*x^4+20*x^3+24*x^2+41*x+57', 'y^2=23*x^6+74*x^5+30*x^4+60*x^3+72*x^2+44*x+13', 'y^2=28*x^6+52*x^5+68*x^4+50*x^3+x^2+37*x+23', 'y^2=5*x^6+77*x^5+46*x^4+71*x^3+3*x^2+32*x+69', 'y^2=5*x^6+19*x^5+70*x^4+25*x^3+20*x^2+45*x+54', 'y^2=15*x^6+57*x^5+52*x^4+75*x^3+60*x^2+56*x+4', 'y^2=77*x^6+66*x^5+52*x^4+73*x^3+11*x^2+33*x+3', 'y^2=73*x^6+40*x^5+77*x^4+61*x^3+33*x^2+20*x+9', 'y^2=24*x^6+65*x^5+63*x^4+60*x^3+75*x^2+41*x+53', 'y^2=72*x^6+37*x^5+31*x^4+22*x^3+67*x^2+44*x+1', 'y^2=25*x^6+x^5+74*x^4+3*x^3+26*x^2+55*x+57', 'y^2=75*x^6+3*x^5+64*x^4+9*x^3+78*x^2+7*x+13', 'y^2=8*x^6+24*x^5+23*x^4+39*x^3+36*x^2+47*x+12', 'y^2=24*x^6+72*x^5+69*x^4+38*x^3+29*x^2+62*x+36', 'y^2=30*x^6+74*x^5+43*x^4+30*x^3+3*x^2+45*x+8', 'y^2=11*x^6+64*x^5+50*x^4+11*x^3+9*x^2+56*x+24', 'y^2=5*x^6+36*x^5+56*x^4+28*x^3+69*x^2+34*x+8', 'y^2=15*x^6+29*x^5+10*x^4+5*x^3+49*x^2+23*x+24', 'y^2=19*x^6+67*x^5+x^4+65*x^3+3*x^2+61', 'y^2=57*x^6+43*x^5+3*x^4+37*x^3+9*x^2+25', 'y^2=68*x^6+32*x^5+36*x^4+50*x^3+39*x^2+54*x+63', 'y^2=46*x^6+17*x^5+29*x^4+71*x^3+38*x^2+4*x+31', 'y^2=74*x^6+24*x^5+52*x^4+30*x^3+72*x^2+73*x+68', 'y^2=64*x^6+72*x^5+77*x^4+11*x^3+58*x^2+61*x+46', 'y^2=65*x^6+45*x^5+38*x^4+23*x^3+74*x^2+32*x+77', 'y^2=37*x^6+56*x^5+35*x^4+69*x^3+64*x^2+17*x+73'], 'dim1_distinct': 0, 'dim1_factors': 0, 'dim2_distinct': 1, 'dim2_factors': 1, 'dim3_distinct': 0, 'dim3_factors': 0, 'dim4_distinct': 0, 'dim4_factors': 0, 'dim5_distinct': 0, 'dim5_factors': 0, 'endomorphism_ring_count': 1, 'g': 2, 'galois_groups': ['4T2'], 'geom_dim1_distinct': 1, 'geom_dim1_factors': 2, 'geom_dim2_distinct': 0, 'geom_dim2_factors': 0, 'geom_dim3_distinct': 0, 'geom_dim3_factors': 0, 'geom_dim4_distinct': 0, 'geom_dim4_factors': 0, 'geom_dim5_distinct': 0, 'geom_dim5_factors': 0, 'geometric_center_dim': 2, 'geometric_extension_degree': 2, 'geometric_galois_groups': ['2T1'], 'geometric_number_fields': ['2.0.18564.1'], 'geometric_splitting_field': '2.0.18564.1', 'geometric_splitting_polynomials': [[4641, 0, 1]], 'group_structure_count': 1, 'has_geom_ss_factor': False, 'has_jacobian': 1, 'has_principal_polarization': 1, 'hyp_count': 96, 'id': 73535, 'is_cyclic': True, 'is_geometrically_simple': False, 'is_geometrically_squarefree': False, 'is_primitive': True, 'is_simple': True, 'is_squarefree': True, 'is_supersingular': False, 'jacobian_count': 96, 'label': '2.79.a_adc', 'max_divalg_dim': 1, 'max_geom_divalg_dim': 1, 'max_twist_degree': 4, 'newton_coelevation': 2, 'newton_elevation': 0, 'noncyclic_primes': [], 'number_fields': ['4.0.5513953536.4'], 'p': 79, 'p_rank': 2, 'p_rank_deficit': 0, 'poly': [1, 0, -80, 0, 6241], 'poly_str': '1 0 -80 0 6241 ', 'primitive_models': [], 'q': 79, 'real_poly': [1, 0, -238], 'simple_distinct': ['2.79.a_adc'], 'simple_factors': ['2.79.a_adcA'], 'simple_multiplicities': [1], 'singular_primes': [], 'slopes': ['0A', '0B', '1A', '1B'], 'splitting_field': '4.0.5513953536.4', 'splitting_polynomials': [[6241, 0, -80, 0, 1]], 'twist_count': 2, 'twists': [['2.79.a_dc', '2.38950081.rzw_jrkuyg', 4]], 'weak_equivalence_count': 1, 'zfv_index': 1, 'zfv_index_factorization': [], 'zfv_is_bass': True, 'zfv_is_maximal': True, 'zfv_plus_index': 1, 'zfv_plus_index_factorization': [], 'zfv_plus_norm': 6084, 'zfv_singular_count': 0, 'zfv_singular_primes': []}