Formats: - HTML - YAML - JSON - 2025-12-10T05:57:20.743069
Query: /api/av_fq_isog/?_offset=0
Show schema

{'abvar_count': 6376, 'abvar_counts': [6376, 29329600, 150817094248, 806449027968000, 4297626852982731496, 22902094300892243473600, 122045054833947806273689192, 650377806456625800634054656000, 3465863735548650770983348358914792, 18469587800738716314364222880693368000], 'abvar_counts_str': '6376 29329600 150817094248 806449027968000 4297626852982731496 22902094300892243473600 122045054833947806273689192 650377806456625800634054656000 3465863735548650770983348358914792 18469587800738716314364222880693368000 ', 'angle_corank': 0, 'angle_rank': 2, 'angles': [0.520523672153108, 0.720161371997939], 'center_dim': 4, 'cohen_macaulay_max': 2, 'curve_count': 86, 'curve_counts': [86, 5502, 387686, 28397854, 2073072086, 151334531934, 11047402211750, 806460000927166, 58871586946065878, 4297625836359214782], 'curve_counts_str': '86 5502 387686 28397854 2073072086 151334531934 11047402211750 806460000927166 58871586946065878 4297625836359214782 ', 'curves': ['y^2=10*x^6+36*x^5+31*x^4+13*x^3+19*x^2+33*x+45', 'y^2=6*x^6+71*x^5+53*x^4+40*x^3+5*x^2+57*x+57', 'y^2=12*x^6+45*x^5+12*x^4+3*x^3+16*x^2+12*x+22', 'y^2=54*x^6+60*x^5+63*x^4+17*x^3+20*x^2+14*x+13', 'y^2=15*x^6+69*x^5+67*x^4+18*x^3+60*x^2+16*x+57', 'y^2=45*x^6+44*x^5+60*x^4+4*x^3+44*x^2+48*x+57', 'y^2=24*x^6+47*x^5+11*x^4+36*x^3+57*x^2+56*x+44', 'y^2=70*x^6+13*x^5+13*x^4+17*x^3+6*x^2+47*x+46', 'y^2=68*x^6+45*x^5+26*x^4+42*x^3+62*x^2+36*x+43', 'y^2=3*x^6+62*x^5+16*x^4+46*x^3+27*x^2+71*x', 'y^2=68*x^6+63*x^5+68*x^4+63*x^3+61*x^2+18*x+13', 'y^2=16*x^6+35*x^5+2*x^4+31*x^3+45*x^2+31*x+32', 'y^2=55*x^6+4*x^5+x^4+60*x^3+53*x+7', 'y^2=69*x^6+39*x^5+62*x^4+60*x^3+70*x^2+45*x+70', 'y^2=32*x^6+18*x^5+55*x^4+42*x^3+34*x^2+64*x', 'y^2=52*x^6+5*x^5+32*x^4+52*x^3+39*x^2+50*x+8', 'y^2=58*x^6+27*x^5+58*x^4+29*x^3+61*x^2+46*x+42', 'y^2=63*x^6+6*x^5+11*x^4+48*x^3+35*x^2+14*x+66', 'y^2=63*x^6+34*x^5+9*x^4+39*x^3+31*x^2+41*x+37', 'y^2=47*x^6+2*x^5+41*x^4+41*x^3+72*x^2+39*x+23', 'y^2=2*x^6+12*x^5+38*x^4+13*x^3+12*x^2+7*x+28', 'y^2=69*x^6+8*x^5+70*x^4+64*x^3+58*x^2+31*x+5', 'y^2=69*x^6+68*x^5+33*x^4+7*x^3+x^2+18*x+23', 'y^2=67*x^6+16*x^5+38*x^4+4*x^3+31*x^2+61*x+29', 'y^2=32*x^6+65*x^5+63*x^4+34*x^3+57*x^2+41*x+7', 'y^2=69*x^6+8*x^4+56*x^3+55*x^2+63*x+53', 'y^2=38*x^6+56*x^5+35*x^4+7*x^3+13*x^2+7*x+32', 'y^2=27*x^6+32*x^5+24*x^4+34*x^3+46*x^2+49*x+8', 'y^2=60*x^6+64*x^5+x^4+x^3+10*x^2+40*x+16', 'y^2=19*x^6+47*x^5+58*x^4+29*x^3+3*x^2+45*x+71', 'y^2=36*x^6+8*x^5+27*x^4+69*x^3+17*x^2+53*x+8', 'y^2=26*x^6+24*x^5+55*x^4+52*x^3+3*x^2+15*x+43', 'y^2=9*x^6+16*x^5+39*x^4+58*x^3+33*x^2+4*x+22', 'y^2=54*x^6+57*x^5+18*x^4+72*x^3+27*x^2+47*x+42', 'y^2=50*x^6+3*x^5+49*x^4+50*x^3+8*x^2+34*x+22', 'y^2=42*x^6+3*x^5+38*x^4+60*x^3+8*x^2+5*x+50', 'y^2=41*x^6+32*x^5+3*x^4+46*x^3+x^2+23*x+66', 'y^2=38*x^6+50*x^5+29*x^4+41*x^3+x^2+52*x+8', 'y^2=38*x^6+34*x^5+9*x^4+64*x^3+50*x^2+24*x+65', 'y^2=8*x^6+51*x^5+30*x^4+17*x^3+31*x^2+31*x+64', 'y^2=18*x^6+23*x^5+7*x^4+35*x^3+26*x^2+54*x+21', 'y^2=19*x^6+60*x^5+35*x^4+38*x^3+22*x^2+48*x+70', 'y^2=58*x^6+48*x^5+28*x^4+43*x^3+34*x^2+20*x+9', 'y^2=4*x^6+35*x^5+3*x^4+6*x^3+71*x^2+51*x+54', 'y^2=36*x^6+18*x^5+66*x^4+2*x^3+39*x^2+39*x+32', 'y^2=47*x^5+60*x^4+33*x^3+59*x^2+18*x+63', 'y^2=50*x^6+68*x^5+72*x^4+31*x^3+42*x^2+53*x+8', 'y^2=72*x^6+43*x^5+30*x^4+34*x^2+28*x+3', 'y^2=4*x^6+52*x^5+28*x^4+7*x^3+42*x^2+47*x+39', 'y^2=15*x^6+23*x^5+14*x^4+26*x^3+43*x^2+10*x+71', 'y^2=27*x^6+42*x^5+18*x^4+57*x^3+50*x^2+2*x+29', 'y^2=29*x^6+23*x^5+66*x^4+27*x^3+52*x^2+x+27', 'y^2=22*x^6+18*x^5+33*x^4+41*x^2+20*x+38', 'y^2=6*x^6+19*x^5+25*x^4+5*x^3+68*x^2+55*x+40', 'y^2=2*x^6+43*x^5+13*x^4+60*x^3+35*x^2+38*x+49', 'y^2=9*x^6+23*x^5+62*x^4+48*x^3+64*x^2+31*x+67', 'y^2=46*x^6+28*x^5+34*x^4+9*x^3+25*x^2+52*x+28', 'y^2=70*x^6+71*x^5+69*x^4+72*x^3+26*x^2+30*x+21', 'y^2=30*x^6+45*x^5+72*x^4+37*x^3+48*x^2+59*x+54', 'y^2=43*x^6+45*x^5+56*x^4+19*x^3+22*x^2+11*x+2', 'y^2=2*x^6+30*x^5+58*x^4+31*x^3+21*x^2+6*x+4', 'y^2=69*x^6+24*x^5+4*x^4+54*x^3+11*x^2+27*x+12', 'y^2=65*x^6+13*x^5+65*x^4+36*x^3+24*x^2+20*x+15', 'y^2=45*x^6+43*x^5+29*x^4+56*x^3+31*x^2+9*x', 'y^2=50*x^6+42*x^5+37*x^4+37*x^3+64*x^2+55*x+36', 'y^2=53*x^6+24*x^5+47*x^3+41*x^2+39*x+46', 'y^2=56*x^6+64*x^4+35*x^3+48*x^2+44*x+64', 'y^2=50*x^6+69*x^5+x^4+38*x^3+6*x^2+47*x+34', 'y^2=16*x^6+49*x^5+11*x^4+51*x^3+35*x^2+70*x+50', 'y^2=22*x^6+48*x^5+6*x^4+63*x^3+14*x^2+8*x+32', 'y^2=23*x^6+38*x^5+22*x^4+60*x^3+3*x^2+20*x+5', 'y^2=67*x^6+8*x^5+15*x^4+x^3+63*x^2+26*x+43', 'y^2=37*x^6+25*x^5+55*x^4+39*x^3+62*x^2+23*x+19', 'y^2=35*x^6+x^5+21*x^4+68*x^3+8*x^2+19*x+32', 'y^2=25*x^6+65*x^5+64*x^4+66*x^3+18*x^2+31*x+63', 'y^2=35*x^6+7*x^5+44*x^4+61*x^3+12*x+14', 'y^2=53*x^6+51*x^5+54*x^4+7*x^3+41*x^2+34*x+72', 'y^2=10*x^6+23*x^5+10*x^4+8*x^3+14*x^2+6*x+29', 'y^2=47*x^6+6*x^5+49*x^4+47*x^3+38*x^2+64*x+57', 'y^2=4*x^6+63*x^5+60*x^4+49*x^3+4*x^2+16*x+69', 'y^2=3*x^6+25*x^5+42*x^4+11*x^3+x^2+25*x+3', 'y^2=14*x^6+29*x^5+62*x^4+68*x^3+70*x^2+64*x+64', 'y^2=2*x^6+5*x^5+39*x^4+72*x^3+23*x^2+17*x+62', 'y^2=62*x^5+12*x^4+11*x^3+53*x^2+60*x+21', 'y^2=65*x^6+9*x^5+22*x^4+29*x^3+57*x^2+47*x+24', 'y^2=31*x^6+66*x^5+69*x^4+35*x^3+64*x^2+31*x+3', 'y^2=25*x^6+15*x^5+65*x^4+55*x^3+17*x^2+62*x+16', 'y^2=66*x^6+39*x^5+59*x^4+66*x^3+x^2+59*x+32', 'y^2=54*x^6+9*x^5+41*x^4+23*x^3+12*x^2+56*x+70', 'y^2=42*x^6+42*x^5+72*x^4+32*x^3+50*x^2+39*x+40', 'y^2=49*x^6+56*x^5+35*x^4+65*x^3+12*x^2+16*x+63', 'y^2=36*x^6+61*x^5+11*x^4+9*x^3+61*x^2+39*x+51', 'y^2=46*x^6+58*x^5+65*x^4+44*x^3+14*x^2+8*x+54', 'y^2=33*x^6+46*x^5+55*x^4+68*x^3+7*x^2+63*x+21', 'y^2=69*x^6+60*x^5+41*x^4+47*x^3+33*x^2+18*x+49', 'y^2=39*x^6+71*x^5+40*x^4+19*x^3+24*x^2+55*x+48', 'y^2=62*x^6+14*x^5+66*x^4+5*x^3+12*x^2+60*x+59', 'y^2=37*x^6+27*x^5+6*x^4+7*x^3+7*x^2+27*x', 'y^2=9*x^6+45*x^5+8*x^4+15*x^3+52*x^2+11*x+4', 'y^2=61*x^6+48*x^5+32*x^4+47*x^3+28*x^2+34*x+71', 'y^2=4*x^6+32*x^5+11*x^4+51*x^3+58*x^2+69*x+68', 'y^2=32*x^6+15*x^5+13*x^4+8*x^3+30*x^2+68*x+64', 'y^2=53*x^6+x^5+16*x^4+71*x^3+18*x^2+52*x+21', 'y^2=56*x^6+31*x^5+61*x^4+27*x^3+67*x^2+54*x+38', 'y^2=45*x^6+51*x^5+56*x^4+26*x^3+67*x^2+7*x+14', 'y^2=23*x^6+7*x^5+53*x^4+7*x^3+70*x^2+63*x+12', 'y^2=37*x^6+10*x^5+55*x^4+8*x^3+24*x+20', 'y^2=64*x^6+49*x^5+35*x^4+60*x^3+28*x^2+58*x+24', 'y^2=43*x^6+56*x^5+3*x^4+39*x^3+16*x^2+56*x+2', 'y^2=17*x^6+11*x^5+22*x^4+45*x^3+56*x^2+48*x+48', 'y^2=5*x^6+37*x^5+41*x^4+69*x^3+9*x^2+38*x+24', 'y^2=37*x^6+13*x^5+2*x^4+39*x^3+x^2+64*x+9', 'y^2=12*x^6+30*x^5+29*x^4+60*x^3+38*x^2+38*x+50', 'y^2=4*x^6+13*x^5+64*x^4+49*x^3+8*x^2+36*x+21', 'y^2=3*x^6+61*x^5+14*x^4+27*x^3+62*x^2+5*x+25', 'y^2=59*x^6+30*x^5+10*x^4+55*x^3+32*x^2+57*x+57', 'y^2=49*x^6+58*x^5+60*x^4+26*x^3+66*x^2+51*x+67', 'y^2=5*x^6+34*x^5+32*x^4+55*x^3+47*x^2+66*x+1', 'y^2=34*x^6+53*x^5+42*x^4+69*x^3+62*x^2+62*x+3', 'y^2=16*x^6+35*x^5+10*x^4+46*x^3+61*x^2+46*x+3', 'y^2=29*x^6+66*x^5+2*x^4+18*x^3+52*x^2+52*x+69', 'y^2=52*x^6+3*x^5+54*x^4+53*x^3+60*x^2+9*x+62', 'y^2=61*x^6+24*x^5+62*x^4+58*x^3+50*x^2+15*x+43', 'y^2=70*x^6+42*x^5+6*x^4+58*x^3+68*x^2+36*x+61', 'y^2=55*x^6+13*x^5+46*x^4+36*x^3+8*x^2+37*x+13', 'y^2=47*x^6+29*x^5+18*x^4+32*x^3+57*x^2+67*x+44'], 'dim1_distinct': 0, 'dim1_factors': 0, 'dim2_distinct': 1, 'dim2_factors': 1, 'dim3_distinct': 0, 'dim3_factors': 0, 'dim4_distinct': 0, 'dim4_factors': 0, 'dim5_distinct': 0, 'dim5_factors': 0, 'endomorphism_ring_count': 4, 'g': 2, 'galois_groups': ['4T3'], 'geom_dim1_distinct': 0, 'geom_dim1_factors': 0, 'geom_dim2_distinct': 1, 'geom_dim2_factors': 1, 'geom_dim3_distinct': 0, 'geom_dim3_factors': 0, 'geom_dim4_distinct': 0, 'geom_dim4_factors': 0, 'geom_dim5_distinct': 0, 'geom_dim5_factors': 0, 'geometric_center_dim': 4, 'geometric_extension_degree': 1, 'geometric_galois_groups': ['4T3'], 'geometric_number_fields': ['4.0.7252992.2'], 'geometric_splitting_field': '4.0.7252992.2', 'geometric_splitting_polynomials': [[3148, 0, 116, 0, 1]], 'group_structure_count': 3, 'has_geom_ss_factor': False, 'has_jacobian': 1, 'has_principal_polarization': 1, 'hyp_count': 126, 'id': 68973, 'is_cyclic': False, 'is_geometrically_simple': True, 'is_geometrically_squarefree': True, 'is_primitive': True, 'is_simple': True, 'is_squarefree': True, 'is_supersingular': False, 'jacobian_count': 126, 'label': '2.73.m_gc', 'max_divalg_dim': 1, 'max_geom_divalg_dim': 1, 'max_twist_degree': 2, 'newton_coelevation': 2, 'newton_elevation': 0, 'noncyclic_primes': [2], 'number_fields': ['4.0.7252992.2'], 'p': 73, 'p_rank': 2, 'p_rank_deficit': 0, 'poly': [1, 12, 158, 876, 5329], 'poly_str': '1 12 158 876 5329 ', 'primitive_models': [], 'q': 73, 'real_poly': [1, 12, 12], 'simple_distinct': ['2.73.m_gc'], 'simple_factors': ['2.73.m_gcA'], 'simple_multiplicities': [1], 'singular_primes': ['2,F^2+F+2*V+24'], 'slopes': ['0A', '0B', '1A', '1B'], 'splitting_field': '4.0.7252992.2', 'splitting_polynomials': [[3148, 0, 116, 0, 1]], 'twist_count': 2, 'twists': [['2.73.am_gc', '2.5329.gq_vpm', 2]], 'weak_equivalence_count': 5, 'zfv_index': 8, 'zfv_index_factorization': [[2, 3]], 'zfv_is_bass': False, 'zfv_is_maximal': False, 'zfv_plus_index': 2, 'zfv_plus_index_factorization': [[2, 1]], 'zfv_plus_norm': 50368, 'zfv_singular_count': 2, 'zfv_singular_primes': ['2,F^2+F+2*V+24']}