Formats: - HTML - YAML - JSON - 2025-11-10T14:09:12.346965
Query: /api/av_fq_isog/?_offset=0
Show schema

{'abvar_count': 4372, 'abvar_counts': [4372, 19114384, 90458328244, 405868407422976, 1822837806662875732, 8182709148699248123536, 36732225162908423962524148, 164890971619921873680438657024, 740195513856780070694439633562516, 3322737669399523526378452220074535824], 'abvar_counts_str': '4372 19114384 90458328244 405868407422976 1822837806662875732 8182709148699248123536 36732225162908423962524148 164890971619921873680438657024 740195513856780070694439633562516 3322737669399523526378452220074535824 ', 'angle_corank': 1, 'angle_rank': 1, 'angles': [0.0785709304621225, 0.921429069537878], 'center_dim': 4, 'cohen_macaulay_max': 1, 'curve_count': 68, 'curve_counts': [68, 4254, 300764, 20141230, 1350125108, 90458274318, 6060711605324, 406067709235294, 27206534396294948, 1822837808773990014], 'curve_counts_str': '68 4254 300764 20141230 1350125108 90458274318 6060711605324 406067709235294 27206534396294948 1822837808773990014 ', 'curves': ['y^2=11*x^6+38*x^5+59*x^4+30*x^3+66*x^2+32*x+47', 'y^2=36*x^6+24*x^5+10*x^4+49*x^3+61*x^2+14*x+41', 'y^2=51*x^6+11*x^5+18*x^4+46*x^3+27*x^2+64*x+31', 'y^2=50*x^6+x^5+16*x^4+41*x^3+5*x^2+55*x+24', 'y^2=51*x^6+4*x^5+52*x^3+33*x+10', 'y^2=8*x^6+33*x^5+50*x^4+25*x^3+x^2+59*x+24', 'y^2=8*x^6+39*x^5+4*x^4+33*x^2+13*x+45', 'y^2=60*x^6+24*x^5+63*x^4+37*x^3+44*x^2+23*x+14', 'y^2=53*x^6+48*x^5+59*x^4+7*x^3+21*x^2+46*x+28', 'y^2=5*x^6+56*x^5+17*x^4+46*x^3+57*x^2+21*x+59', 'y^2=20*x^6+12*x^5+13*x^4+66*x^3+44*x^2+39*x+66', 'y^2=40*x^6+15*x^5+56*x^4+2*x^3+27*x^2+65*x+51', 'y^2=13*x^6+30*x^5+45*x^4+4*x^3+54*x^2+63*x+35', 'y^2=49*x^6+26*x^4+3*x^3+45*x^2+2', 'y^2=35*x^6+24*x^5+37*x^4+50*x^2+22*x+34', 'y^2=54*x^6+26*x^5+2*x^4+61*x^3+26*x^2+42*x+42', 'y^2=41*x^6+52*x^5+4*x^4+55*x^3+52*x^2+17*x+17', 'y^2=x^6+31*x^5+26*x^4+11*x^3+19*x^2+24*x+3', 'y^2=2*x^6+62*x^5+52*x^4+22*x^3+38*x^2+48*x+6', 'y^2=41*x^6+44*x^5+10*x^4+57*x^3+6*x^2+53*x+61', 'y^2=15*x^6+21*x^5+20*x^4+47*x^3+12*x^2+39*x+55', 'y^2=x^6+24*x^5+15*x^4+65*x^3+32*x^2+53*x+57', 'y^2=2*x^6+48*x^5+30*x^4+63*x^3+64*x^2+39*x+47', 'y^2=40*x^6+36*x^5+22*x^4+24*x^2+38*x+25', 'y^2=28*x^5+53*x^4+47*x^3+4*x^2+33*x+40', 'y^2=56*x^5+39*x^4+27*x^3+8*x^2+66*x+13', 'y^2=33*x^6+64*x^5+x^4+21*x^3+56*x^2+54*x+7', 'y^2=66*x^6+61*x^5+2*x^4+42*x^3+45*x^2+41*x+14', 'y^2=29*x^6+26*x^5+3*x^4+45*x^3+25*x^2+4*x+20', 'y^2=18*x^6+13*x^5+8*x^4+46*x^3+41*x^2+41*x+43', 'y^2=20*x^6+44*x^5+17*x^4+21*x^3+23*x^2+2*x+65', 'y^2=40*x^6+21*x^5+34*x^4+42*x^3+46*x^2+4*x+63', 'y^2=64*x^6+53*x^5+17*x^4+16*x^3+36*x^2+8*x+50', 'y^2=61*x^6+39*x^5+34*x^4+32*x^3+5*x^2+16*x+33', 'y^2=33*x^6+16*x^5+11*x^4+17*x^3+35*x^2+23*x+63', 'y^2=18*x^6+54*x^5+57*x^4+44*x^3+40*x^2+66*x+59', 'y^2=38*x^6+6*x^5+49*x^4+10*x^2+18*x+41', 'y^2=54*x^6+58*x^5+59*x^4+9*x^3+53*x^2+52*x+57', 'y^2=60*x^6+23*x^5+44*x^4+31*x^2+66*x+36', 'y^2=46*x^6+4*x^5+42*x^4+53*x^3+28*x^2+18*x+55', 'y^2=25*x^6+8*x^5+17*x^4+39*x^3+56*x^2+36*x+43', 'y^2=53*x^6+39*x^5+3*x^4+13*x^2+27*x+42', 'y^2=23*x^6+19*x^5+36*x^3+8*x^2+39*x+52', 'y^2=46*x^6+38*x^5+5*x^3+16*x^2+11*x+37', 'y^2=8*x^6+5*x^5+7*x^4+34*x^3+4*x^2+3*x+64', 'y^2=34*x^6+62*x^5+55*x^4+14*x^2+31*x+31', 'y^2=7*x^6+22*x^5+37*x^4+30*x^3+51*x^2+14*x+4', 'y^2=63*x^6+50*x^5+55*x^4+19*x^3+66*x^2+5*x+29', 'y^2=55*x^6+5*x^5+34*x^4+50*x^3+24*x^2+62*x+61', 'y^2=43*x^6+10*x^5+x^4+33*x^3+48*x^2+57*x+55', 'y^2=40*x^6+10*x^5+48*x^4+60*x^3+62*x^2+56*x+66', 'y^2=12*x^6+x^5+5*x^4+52*x^3+65*x^2+35*x+33', 'y^2=9*x^6+18*x^5+36*x^4+33*x^3+30*x^2+46*x+8', 'y^2=65*x^6+61*x^5+56*x^4+28*x^3+27*x^2+53*x+48', 'y^2=64*x^6+25*x^5+32*x^4+54*x^3+17*x^2+10*x+27', 'y^2=38*x^6+24*x^5+40*x^4+56*x^2+28*x+63', 'y^2=18*x^6+4*x^5+3*x^4+53*x^2+32*x+2', 'y^2=61*x^6+60*x^5+2*x^4+14*x^3+21*x^2+25*x+31', 'y^2=55*x^6+53*x^5+4*x^4+28*x^3+42*x^2+50*x+62', 'y^2=64*x^6+21*x^5+15*x^4+36*x^2+5*x+40', 'y^2=41*x^6+54*x^5+15*x^4+6*x^2+53*x+38', 'y^2=25*x^6+8*x^5+12*x^4+30*x^3+55*x^2+16*x+22', 'y^2=50*x^6+16*x^5+24*x^4+60*x^3+43*x^2+32*x+44', 'y^2=31*x^6+62*x^5+43*x^4+14*x^3+9*x^2+15*x+60', 'y^2=32*x^6+20*x^5+36*x^4+60*x^3+42*x^2+57*x+26'], 'dim1_distinct': 0, 'dim1_factors': 0, 'dim2_distinct': 1, 'dim2_factors': 1, 'dim3_distinct': 0, 'dim3_factors': 0, 'dim4_distinct': 0, 'dim4_factors': 0, 'dim5_distinct': 0, 'dim5_factors': 0, 'endomorphism_ring_count': 14, 'g': 2, 'galois_groups': ['4T2'], 'geom_dim1_distinct': 1, 'geom_dim1_factors': 2, 'geom_dim2_distinct': 0, 'geom_dim2_factors': 0, 'geom_dim3_distinct': 0, 'geom_dim3_factors': 0, 'geom_dim4_distinct': 0, 'geom_dim4_factors': 0, 'geom_dim5_distinct': 0, 'geom_dim5_factors': 0, 'geometric_center_dim': 2, 'geometric_extension_degree': 2, 'geometric_galois_groups': ['2T1'], 'geometric_number_fields': ['2.0.7.1'], 'geometric_splitting_field': '2.0.7.1', 'geometric_splitting_polynomials': [[2, -1, 1]], 'group_structure_count': 2, 'has_geom_ss_factor': False, 'has_jacobian': 1, 'has_principal_polarization': 1, 'hyp_count': 65, 'id': 53706, 'is_geometrically_simple': False, 'is_geometrically_squarefree': False, 'is_primitive': True, 'is_simple': True, 'is_squarefree': True, 'is_supersingular': False, 'jacobian_count': 65, 'label': '2.67.a_aeo', 'max_divalg_dim': 1, 'max_geom_divalg_dim': 1, 'max_twist_degree': 12, 'newton_coelevation': 2, 'newton_elevation': 0, 'number_fields': ['4.0.784.1'], 'p': 67, 'p_rank': 2, 'p_rank_deficit': 0, 'poly': [1, 0, -118, 0, 4489], 'poly_str': '1 0 -118 0 4489 ', 'primitive_models': [], 'q': 67, 'real_poly': [1, 0, -252], 'simple_distinct': ['2.67.a_aeo'], 'simple_factors': ['2.67.a_aeoA'], 'simple_multiplicities': [1], 'singular_primes': ['2,F^2-2*F+V+2', '3,-11*F+7*V+3'], 'slopes': ['0A', '0B', '1A', '1B'], 'splitting_field': '4.0.784.1', 'splitting_polynomials': [[4, 0, -3, 0, 1]], 'twist_count': 6, 'twists': [['2.67.ai_fu', '2.20151121.aoqm_flswlq', 4], ['2.67.a_eo', '2.20151121.aoqm_flswlq', 4], ['2.67.i_fu', '2.20151121.aoqm_flswlq', 4], ['2.67.ae_abz', '2.8182718904632857144561.bsimiqvbo_bcqxarvzgcvlwqmjm', 12], ['2.67.e_abz', '2.8182718904632857144561.bsimiqvbo_bcqxarvzgcvlwqmjm', 12]], 'weak_equivalence_count': 14, 'zfv_index': 576, 'zfv_index_factorization': [[2, 6], [3, 2]], 'zfv_is_bass': True, 'zfv_is_maximal': False, 'zfv_plus_index': 6, 'zfv_plus_index_factorization': [[2, 1], [3, 1]], 'zfv_plus_norm': 256, 'zfv_singular_count': 4, 'zfv_singular_primes': ['2,F^2-2*F+V+2', '3,-11*F+7*V+3']}