Formats: - HTML - YAML - JSON - 2025-12-30T19:15:57.070639
Query: /api/av_fq_isog/?_offset=0
Show schema

{'abvar_count': 1828, 'abvar_counts': [1828, 3341584, 6321474436, 11710193504256, 21611482030503268, 39961039045001518096, 73885357344666555273412, 136613944094421904801726464, 252599333573497330426178259364, 467056155554765655576801358679824], 'abvar_counts_str': '1828 3341584 6321474436 11710193504256 21611482030503268 39961039045001518096 73885357344666555273412 136613944094421904801726464 252599333573497330426178259364 467056155554765655576801358679824 ', 'angle_corank': 1, 'angle_rank': 1, 'angles': [0.208828274827639, 0.791171725172361], 'center_dim': 4, 'cohen_macaulay_max': 1, 'curve_count': 44, 'curve_counts': [44, 1806, 79508, 3425230, 147008444, 6321585822, 271818611108, 11688193293214, 502592611936844, 21611481747722286], 'curve_counts_str': '44 1806 79508 3425230 147008444 6321585822 271818611108 11688193293214 502592611936844 21611481747722286 ', 'curves': ['y^2=11*x^6+23*x^5+25*x^4+9*x^3+18*x^2+19*x+6', 'y^2=33*x^6+26*x^5+32*x^4+27*x^3+11*x^2+14*x+18', 'y^2=42*x^6+34*x^5+27*x^4+20*x^3+10*x^2+16*x+32', 'y^2=40*x^6+16*x^5+38*x^4+17*x^3+30*x^2+5*x+10', 'y^2=14*x^6+19*x^5+10*x^4+29*x^3+2*x^2+30*x+18', 'y^2=15*x^6+18*x^5+38*x^4+22*x^3+12*x^2+28*x+30', 'y^2=28*x^6+22*x^5+24*x^4+31*x^3+39*x^2+38*x+29', 'y^2=41*x^6+23*x^5+29*x^4+7*x^3+31*x^2+28*x+1', 'y^2=14*x^6+35*x^5+40*x^4+41*x^3+40*x^2+15*x+28', 'y^2=42*x^6+19*x^5+34*x^4+37*x^3+34*x^2+2*x+41', 'y^2=x^6+40*x^5+42*x^4+12*x^3+x^2+40*x+42', 'y^2=24*x^6+6*x^5+16*x^4+16*x^3+42*x^2+40*x+33', 'y^2=13*x^6+18*x^5+6*x^4+14*x^3+31*x^2+2*x+22', 'y^2=27*x^6+30*x^5+25*x^4+21*x^3+11*x^2+26*x+36', 'y^2=38*x^6+4*x^5+32*x^4+20*x^3+33*x^2+35*x+22', 'y^2=38*x^6+18*x^5+5*x^4+32*x^3+10*x^2+21', 'y^2=28*x^6+11*x^5+15*x^4+10*x^3+30*x^2+20', 'y^2=20*x^6+21*x^5+27*x^4+16*x^3+27*x^2+29*x+1', 'y^2=29*x^6+17*x^5+10*x^4+12*x^3+12*x^2+9*x+25', 'y^2=13*x^6+26*x^5+15*x^4+41*x^3+38*x^2+19*x+11', 'y^2=18*x^6+7*x^5+6*x^4+27*x^3+x^2+23*x+21', 'y^2=11*x^6+21*x^5+18*x^4+38*x^3+3*x^2+26*x+20', 'y^2=2*x^6+25*x^5+16*x^4+24*x^3+32*x^2+34*x+22', 'y^2=6*x^6+32*x^5+5*x^4+29*x^3+10*x^2+16*x+23', 'y^2=11*x^6+7*x^5+26*x^4+14*x^3+9*x^2+28*x+2', 'y^2=27*x^6+8*x^5+36*x^4+19*x^3+16*x^2+22*x+35', 'y^2=4*x^6+4*x^5+30*x^4+29*x^3+25*x^2+41*x+27', 'y^2=x^6+9*x^5+10*x^4+40*x^3+33*x^2+26*x+4', 'y^2=3*x^6+27*x^5+30*x^4+34*x^3+13*x^2+35*x+12', 'y^2=3*x^6+22*x^5+36*x^4+34*x^3+29*x^2+2*x+24', 'y^2=7*x^6+5*x^5+x^4+x^3+42*x^2+38*x', 'y^2=21*x^6+15*x^5+3*x^4+3*x^3+40*x^2+28*x', 'y^2=30*x^6+2*x^5+5*x^4+37*x^3+9*x^2+8*x+13', 'y^2=4*x^6+6*x^5+15*x^4+25*x^3+27*x^2+24*x+39', 'y^2=x^6+25*x^5+33*x^4+19*x^2+28*x+41', 'y^2=22*x^6+41*x^5+12*x^4+36*x^3+2*x^2+38*x+12', 'y^2=22*x^6+29*x^5+12*x^4+38*x^3+28*x^2+38*x+18', 'y^2=x^6+42*x^5+7*x^4+2*x^3+39*x^2+15*x+10', 'y^2=3*x^6+40*x^5+21*x^4+6*x^3+31*x^2+2*x+30', 'y^2=33*x^6+12*x^5+5*x^4+9*x^3+24*x^2+3*x+31', 'y^2=41*x^6+6*x^5+24*x^4+36*x^3+28*x^2+x+2', 'y^2=9*x^6+11*x^5+18*x^4+40*x^3+16*x^2+2*x+10', 'y^2=27*x^6+33*x^5+11*x^4+34*x^3+5*x^2+6*x+30', 'y^2=18*x^6+25*x^4+17*x^3+5*x^2+16*x+30', 'y^2=11*x^6+32*x^4+8*x^3+15*x^2+5*x+4', 'y^2=20*x^6+9*x^5+42*x^4+21*x^3+38*x^2+2*x+39', 'y^2=17*x^6+27*x^5+40*x^4+20*x^3+28*x^2+6*x+31', 'y^2=32*x^6+14*x^5+27*x^4+30*x^2+22*x+39', 'y^2=15*x^6+33*x^5+19*x^4+5*x^2+19*x+20', 'y^2=34*x^6+41*x^5+39*x^4+5*x^3+23*x^2+36*x+36', 'y^2=20*x^6+35*x^5+15*x^4+22*x^3+38*x^2+15*x+34', 'y^2=17*x^6+19*x^5+2*x^4+23*x^3+28*x^2+2*x+16', 'y^2=17*x^6+33*x^5+29*x^4+22*x^3+21*x^2+24*x+16', 'y^2=27*x^6+16*x^5+41*x^4+38*x^3+22*x^2+x+11', 'y^2=13*x^5+42*x^4+26*x^3+20*x^2+17*x+6', 'y^2=39*x^5+40*x^4+35*x^3+17*x^2+8*x+18', 'y^2=26*x^6+38*x^5+30*x^4+26*x^3+15*x^2+31*x+14', 'y^2=7*x^6+22*x^5+42*x^4+32*x^3+17*x^2+26*x+18', 'y^2=26*x^6+20*x^5+5*x^4+x^3+5*x^2+27*x+9', 'y^2=35*x^6+17*x^5+15*x^4+3*x^3+15*x^2+38*x+27', 'y^2=34*x^6+2*x^5+33*x^4+36*x^3+17*x^2+3*x+32', 'y^2=16*x^6+6*x^5+13*x^4+22*x^3+8*x^2+9*x+10', 'y^2=3*x^6+13*x^5+20*x^4+16*x^3+24*x^2+17*x+10', 'y^2=35*x^6+2*x^5+26*x^4+33*x^3+9*x^2+8*x+22', 'y^2=10*x^6+30*x^5+31*x^4+7*x^3+14*x^2+22*x+2', 'y^2=10*x^6+4*x^5+35*x^4+34*x^3+19*x^2+5*x+8', 'y^2=30*x^6+12*x^5+19*x^4+16*x^3+14*x^2+15*x+24', 'y^2=8*x^6+3*x^5+32*x^4+2*x^3+35*x^2+9*x+13', 'y^2=8*x^6+15*x^5+38*x^4+6*x^3+17*x^2+9*x+31', 'y^2=24*x^6+2*x^5+28*x^4+18*x^3+8*x^2+27*x+7', 'y^2=13*x^5+31*x^4+4*x^3+15*x^2+19*x+23', 'y^2=39*x^5+7*x^4+12*x^3+2*x^2+14*x+26', 'y^2=40*x^6+16*x^5+34*x^4+36*x^3+20*x^2+34*x+3', 'y^2=34*x^6+5*x^5+16*x^4+22*x^3+17*x^2+16*x+9', 'y^2=28*x^6+17*x^5+9*x^4+30*x^2+36*x+13', 'y^2=26*x^6+20*x^5+18*x^4+23*x^3+14*x^2+19*x+13', 'y^2=4*x^6+22*x^5+24*x^4+40*x^3+x+38', 'y^2=12*x^6+23*x^5+29*x^4+34*x^3+3*x+28', 'y^2=42*x^6+6*x^5+30*x^4+22*x^3+9*x^2+16*x+19', 'y^2=40*x^6+18*x^5+4*x^4+23*x^3+27*x^2+5*x+14', 'y^2=29*x^6+3*x^5+26*x^4+6*x^3+25*x^2+5*x+36', 'y^2=24*x^6+32*x^5+13*x^4+31*x^2+38*x+6', 'y^2=29*x^6+10*x^5+39*x^4+7*x^2+28*x+18', 'y^2=41*x^6+6*x^5+14*x^4+34*x^3+18*x^2+38*x+39', 'y^2=27*x^6+22*x^5+11*x^4+35*x^3+39*x^2+42*x+4', 'y^2=16*x^6+31*x^5+37*x^4+32*x^3+42*x^2+2*x+34', 'y^2=5*x^6+7*x^5+25*x^4+10*x^3+40*x^2+6*x+16', 'y^2=5*x^6+4*x^5+32*x^4+x^3+14*x^2+6*x+40', 'y^2=15*x^6+12*x^5+10*x^4+3*x^3+42*x^2+18*x+34', 'y^2=32*x^6+7*x^5+29*x^4+38*x^3+21*x^2+5*x+21', 'y^2=33*x^6+40*x^5+15*x^4+42*x^3+12*x^2+39*x+13', 'y^2=13*x^6+34*x^5+2*x^4+40*x^3+36*x^2+31*x+39', 'y^2=25*x^6+8*x^5+35*x^4+40*x^3+5*x^2+32*x+26', 'y^2=32*x^6+24*x^5+19*x^4+34*x^3+15*x^2+10*x+35', 'y^2=7*x^6+34*x^4+21*x^3+23*x^2+32*x+24', 'y^2=28*x^6+37*x^5+14*x^4+9*x^3+23*x^2+26', 'y^2=41*x^6+25*x^5+42*x^4+27*x^3+26*x^2+35', 'y^2=20*x^6+18*x^5+34*x^4+20*x^3+14*x^2+13*x+5', 'y^2=17*x^6+11*x^5+16*x^4+17*x^3+42*x^2+39*x+15', 'y^2=x^6+40*x^5+30*x^4+12*x^3+17*x^2+31*x+8', 'y^2=33*x^6+8*x^5+8*x^4+31*x^3+35*x^2+8*x+10', 'y^2=24*x^6+19*x^5+41*x^4+35*x^3+29*x^2+16*x+8', 'y^2=29*x^6+14*x^5+37*x^4+19*x^3+x^2+5*x+24', 'y^2=5*x^6+22*x^5+2*x^4+9*x^3+17*x^2+20*x+23', 'y^2=3*x^6+12*x^5+39*x^4+32*x^2+35*x+4', 'y^2=9*x^6+36*x^5+31*x^4+10*x^2+19*x+12', 'y^2=24*x^6+23*x^5+16*x^4+12*x^3+24*x^2+18*x+19', 'y^2=29*x^6+26*x^5+5*x^4+36*x^3+29*x^2+11*x+14', 'y^2=37*x^6+28*x^5+33*x^4+3*x^3+38*x^2+24*x+28', 'y^2=4*x^6+5*x^5+18*x^4+17*x^2+16*x+3', 'y^2=12*x^6+15*x^5+11*x^4+8*x^2+5*x+9', 'y^2=2*x^6+2*x^5+16*x^4+7*x^3+4*x^2+27*x+37', 'y^2=6*x^6+6*x^5+5*x^4+21*x^3+12*x^2+38*x+25', 'y^2=6*x^6+30*x^5+11*x^4+4*x^3+32*x^2+30*x+37', 'y^2=2*x^6+27*x^5+19*x^4+26*x^3+35*x^2+20*x+14', 'y^2=6*x^6+38*x^5+14*x^4+35*x^3+19*x^2+17*x+42', 'y^2=11*x^5+42*x^4+4*x^3+10*x^2+37*x+14', 'y^2=33*x^5+40*x^4+12*x^3+30*x^2+25*x+42', 'y^2=40*x^5+9*x^4+26*x^3+30*x^2+6*x+20', 'y^2=34*x^5+27*x^4+35*x^3+4*x^2+18*x+17', 'y^2=18*x^6+11*x^5+29*x^4+x^3+39*x^2+37*x+13', 'y^2=11*x^6+33*x^5+x^4+3*x^3+31*x^2+25*x+39', 'y^2=11*x^6+13*x^5+9*x^4+39*x^3+x^2+34*x+8', 'y^2=33*x^6+39*x^5+27*x^4+31*x^3+3*x^2+16*x+24', 'y^2=35*x^6+x^5+40*x^4+11*x^3+10*x^2+40*x+28', 'y^2=19*x^6+3*x^5+34*x^4+33*x^3+30*x^2+34*x+41', 'y^2=11*x^6+13*x^5+33*x^4+32*x^3+10*x^2+25*x+15', 'y^2=22*x^6+2*x^5+39*x^4+30*x^3+16*x^2+32*x+11', 'y^2=22*x^6+15*x^5+23*x^4+22*x^2+35*x+12', 'y^2=23*x^6+2*x^5+26*x^4+23*x^2+19*x+36', 'y^2=8*x^6+13*x^5+12*x^4+37*x^3+39*x^2+20*x+17', 'y^2=38*x^6+9*x^5+21*x^4+18*x^3+9*x^2+35*x+14', 'y^2=9*x^6+31*x^5+2*x^4+x^3+27*x^2+2*x+30', 'y^2=27*x^6+7*x^5+6*x^4+3*x^3+38*x^2+6*x+4', 'y^2=6*x^6+42*x^5+34*x^4+13*x^3+7*x^2+13*x+4', 'y^2=18*x^6+40*x^5+16*x^4+39*x^3+21*x^2+39*x+12', 'y^2=42*x^6+41*x^5+16*x^4+5*x^3+22*x^2+11*x+21', 'y^2=29*x^6+7*x^5+33*x^4+6*x^3+29*x^2+39*x+33', 'y^2=x^6+21*x^5+13*x^4+18*x^3+x^2+31*x+13', 'y^2=14*x^5+17*x^4+2*x^3+11*x^2+32*x+35', 'y^2=42*x^5+8*x^4+6*x^3+33*x^2+10*x+19', 'y^2=16*x^6+4*x^5+41*x^4+x^3+32*x^2+35*x+39', 'y^2=6*x^6+26*x^5+19*x^4+9*x^3+39*x^2+41*x+38', 'y^2=18*x^6+35*x^5+14*x^4+27*x^3+31*x^2+37*x+28', 'y^2=3*x^6+37*x^5+27*x^4+5*x^3+39*x^2+20*x+17', 'y^2=9*x^6+25*x^5+38*x^4+15*x^3+31*x^2+17*x+8', 'y^2=32*x^6+11*x^5+29*x^4+28*x^3+19*x^2+32*x+29', 'y^2=10*x^6+33*x^5+x^4+41*x^3+14*x^2+10*x+1', 'y^2=26*x^6+10*x^5+35*x^4+5*x^3+7*x^2+29*x+22', 'y^2=39*x^6+35*x^5+15*x^4+10*x^3+42*x^2+7*x+27', 'y^2=31*x^6+19*x^5+2*x^4+30*x^3+40*x^2+21*x+38', 'y^2=36*x^6+24*x^4+16*x^3+15*x^2+30*x+16', 'y^2=22*x^6+29*x^4+5*x^3+2*x^2+4*x+5', 'y^2=17*x^6+20*x^4+12*x^3+42*x^2+8*x+21', 'y^2=30*x^6+3*x^5+13*x^4+7*x^3+11*x^2+17*x+29', 'y^2=4*x^6+9*x^5+39*x^4+21*x^3+33*x^2+8*x+1', 'y^2=x^6+18*x^5+3*x^4+21*x^3+3*x^2+8*x+20', 'y^2=3*x^6+11*x^5+9*x^4+20*x^3+9*x^2+24*x+17', 'y^2=2*x^6+39*x^5+26*x^3+14*x^2+35*x+7', 'y^2=6*x^6+31*x^5+35*x^3+42*x^2+19*x+21', 'y^2=22*x^6+3*x^5+24*x^4+27*x^3+22*x^2+37*x+12', 'y^2=23*x^6+9*x^5+29*x^4+38*x^3+23*x^2+25*x+36', 'y^2=40*x^6+28*x^5+16*x^4+23*x^3+25*x^2+11*x+23', 'y^2=34*x^6+41*x^5+5*x^4+26*x^3+32*x^2+33*x+26', 'y^2=26*x^6+8*x^5+14*x^4+42*x^2+3*x+16', 'y^2=35*x^6+24*x^5+42*x^4+40*x^2+9*x+5', 'y^2=28*x^6+8*x^5+33*x^4+39*x^3+16*x^2+15*x+25', 'y^2=24*x^6+17*x^5+31*x^4+39*x^3+11*x^2+28*x+36', 'y^2=29*x^6+8*x^5+7*x^4+31*x^3+33*x^2+41*x+22', 'y^2=37*x^6+36*x^5+34*x^4+2*x^3+11*x^2+28*x+10', 'y^2=25*x^6+22*x^5+16*x^4+6*x^3+33*x^2+41*x+30', 'y^2=x^6+28*x^5+4*x^4+24*x^3+16*x^2+32*x+31', 'y^2=3*x^6+41*x^5+12*x^4+29*x^3+5*x^2+10*x+7', 'y^2=15*x^6+38*x^5+21*x^4+24*x^3+29*x+37', 'y^2=35*x^6+8*x^5+9*x^4+36*x^3+33*x^2+12*x+42', 'y^2=16*x^6+12*x^5+18*x^4+15*x^3+2*x^2+6*x+35', 'y^2=25*x^6+14*x^5+25*x^4+2*x^3+41*x^2+8*x+29', 'y^2=32*x^6+42*x^5+32*x^4+6*x^3+37*x^2+24*x+1', 'y^2=5*x^6+17*x^5+25*x^4+31*x^3+18*x^2+39*x+11', 'y^2=15*x^6+8*x^5+32*x^4+7*x^3+11*x^2+31*x+33', 'y^2=27*x^6+23*x^5+42*x^4+23*x^3+35*x^2+10*x+21', 'y^2=27*x^6+x^5+35*x^4+15*x^3+34*x^2+10*x+35', 'y^2=14*x^6+17*x^5+5*x^4+24*x^2+15*x+34', 'y^2=20*x^6+24*x^5+3*x^4+20*x^2+37*x+19'], 'dim1_distinct': 0, 'dim1_factors': 0, 'dim2_distinct': 1, 'dim2_factors': 1, 'dim3_distinct': 0, 'dim3_factors': 0, 'dim4_distinct': 0, 'dim4_factors': 0, 'dim5_distinct': 0, 'dim5_factors': 0, 'endomorphism_ring_count': 18, 'g': 2, 'galois_groups': ['4T2'], 'geom_dim1_distinct': 1, 'geom_dim1_factors': 2, 'geom_dim2_distinct': 0, 'geom_dim2_factors': 0, 'geom_dim3_distinct': 0, 'geom_dim3_factors': 0, 'geom_dim4_distinct': 0, 'geom_dim4_factors': 0, 'geom_dim5_distinct': 0, 'geom_dim5_factors': 0, 'geometric_center_dim': 2, 'geometric_extension_degree': 2, 'geometric_galois_groups': ['2T1'], 'geometric_number_fields': ['2.0.3.1'], 'geometric_splitting_field': '2.0.3.1', 'geometric_splitting_polynomials': [[1, -1, 1]], 'group_structure_count': 2, 'has_geom_ss_factor': False, 'has_jacobian': 1, 'has_principal_polarization': 1, 'hyp_count': 184, 'id': 25169, 'is_cyclic': False, 'is_geometrically_simple': False, 'is_geometrically_squarefree': False, 'is_primitive': True, 'is_simple': True, 'is_squarefree': True, 'is_supersingular': False, 'jacobian_count': 184, 'label': '2.43.a_aw', 'max_divalg_dim': 1, 'max_geom_divalg_dim': 1, 'max_twist_degree': 12, 'newton_coelevation': 2, 'newton_elevation': 0, 'noncyclic_primes': [2], 'number_fields': ['4.0.144.1'], 'p': 43, 'p_rank': 2, 'p_rank_deficit': 0, 'poly': [1, 0, -22, 0, 1849], 'poly_str': '1 0 -22 0 1849 ', 'primitive_models': [], 'q': 43, 'real_poly': [1, 0, -108], 'simple_distinct': ['2.43.a_aw'], 'simple_factors': ['2.43.a_awA'], 'simple_multiplicities': [1], 'singular_primes': ['2,-F+2*V+1', '3,2*F^2-3*F+3*V-10'], 'slopes': ['0A', '0B', '1A', '1B'], 'splitting_field': '4.0.144.1', 'splitting_polynomials': [[1, 0, -1, 0, 1]], 'twist_count': 24, 'twists': [['2.43.a_acj', '2.79507.a_giuc', 3], ['2.43.a_df', '2.79507.a_giuc', 3], ['2.43.aq_fu', '2.3418801.jng_blotoo', 4], ['2.43.a_w', '2.3418801.jng_blotoo', 4], ['2.43.q_fu', '2.3418801.jng_blotoo', 4], ['2.43.aba_jv', '2.39959630797262576401.bnsjsxw_bggbmnnfrdaqbgg', 12], ['2.43.av_hi', '2.39959630797262576401.bnsjsxw_bggbmnnfrdaqbgg', 12], ['2.43.as_fv', '2.39959630797262576401.bnsjsxw_bggbmnnfrdaqbgg', 12], ['2.43.an_ew', '2.39959630797262576401.bnsjsxw_bggbmnnfrdaqbgg', 12], ['2.43.ak_eh', '2.39959630797262576401.bnsjsxw_bggbmnnfrdaqbgg', 12], ['2.43.ai_v', '2.39959630797262576401.bnsjsxw_bggbmnnfrdaqbgg', 12], ['2.43.af_as', '2.39959630797262576401.bnsjsxw_bggbmnnfrdaqbgg', 12], ['2.43.ad_bu', '2.39959630797262576401.bnsjsxw_bggbmnnfrdaqbgg', 12], ['2.43.a_adf', '2.39959630797262576401.bnsjsxw_bggbmnnfrdaqbgg', 12], ['2.43.a_cj', '2.39959630797262576401.bnsjsxw_bggbmnnfrdaqbgg', 12], ['2.43.d_bu', '2.39959630797262576401.bnsjsxw_bggbmnnfrdaqbgg', 12], ['2.43.f_as', '2.39959630797262576401.bnsjsxw_bggbmnnfrdaqbgg', 12], ['2.43.i_v', '2.39959630797262576401.bnsjsxw_bggbmnnfrdaqbgg', 12], ['2.43.k_eh', '2.39959630797262576401.bnsjsxw_bggbmnnfrdaqbgg', 12], ['2.43.n_ew', '2.39959630797262576401.bnsjsxw_bggbmnnfrdaqbgg', 12], ['2.43.s_fv', '2.39959630797262576401.bnsjsxw_bggbmnnfrdaqbgg', 12], ['2.43.v_hi', '2.39959630797262576401.bnsjsxw_bggbmnnfrdaqbgg', 12], ['2.43.ba_jv', '2.39959630797262576401.bnsjsxw_bggbmnnfrdaqbgg', 12]], 'weak_equivalence_count': 18, 'zfv_index': 2304, 'zfv_index_factorization': [[2, 8], [3, 2]], 'zfv_is_bass': True, 'zfv_is_maximal': False, 'zfv_plus_index': 6, 'zfv_plus_index_factorization': [[2, 1], [3, 1]], 'zfv_plus_norm': 4096, 'zfv_singular_count': 4, 'zfv_singular_primes': ['2,-F+2*V+1', '3,2*F^2-3*F+3*V-10']}