Query:
/api/av_fq_isog/?_offset=0
{'abvar_count': 1752, 'abvar_counts': [1752, 3069504, 4750094232, 7976241202176, 13422659096953752, 22563395212879669824, 37929227194615945146072, 63759083392854076631040000, 107178930967531925998980625752, 180167777233035313133166026877504], 'abvar_counts_str': '1752 3069504 4750094232 7976241202176 13422659096953752 22563395212879669824 37929227194615945146072 63759083392854076631040000 107178930967531925998980625752 180167777233035313133166026877504 ', 'angle_corank': 1, 'angle_rank': 1, 'angles': [0.412810694922395, 0.587189305077605], 'center_dim': 4, 'cohen_macaulay_max': 2, 'curve_count': 42, 'curve_counts': [42, 1822, 68922, 2822686, 115856202, 4750084222, 194754273882, 7984931801278, 327381934393962, 13422658883755102], 'curve_counts_str': '42 1822 68922 2822686 115856202 4750084222 194754273882 7984931801278 327381934393962 13422658883755102 ', 'curves': ['y^2=34*x^6+34*x^5+26*x^4+24*x^3+19*x^2+27*x+27', 'y^2=40*x^6+40*x^5+33*x^4+21*x^3+32*x^2+39*x+39', 'y^2=17*x^6+27*x^5+15*x^4+26*x^3+6*x^2+22*x+18', 'y^2=20*x^6+39*x^5+8*x^4+33*x^3+36*x^2+9*x+26', 'y^2=35*x^6+14*x^5+32*x^4+3*x^3+36*x^2+39*x+35', 'y^2=5*x^6+2*x^5+28*x^4+18*x^3+11*x^2+29*x+5', 'y^2=18*x^6+14*x^5+7*x^4+7*x^3+14*x^2+32*x+21', 'y^2=26*x^6+2*x^5+x^4+x^3+2*x^2+28*x+3', 'y^2=x^6+x^3+30', 'y^2=32*x^6+11*x^5+18*x^4+24*x^3+15*x^2+29*x+16', 'y^2=19*x^6+25*x^5+11*x^4+8*x^3+16*x^2+16*x+40', 'y^2=32*x^6+27*x^5+25*x^4+7*x^3+14*x^2+14*x+35', 'y^2=x^6+x^3+15', 'y^2=11*x^6+24*x^5+30*x^4+24*x^3+35*x^2+11*x+28', 'y^2=25*x^6+21*x^5+16*x^4+21*x^3+5*x^2+25*x+4', 'y^2=27*x^6+31*x^5+15*x^4+25*x^3+15*x^2+7*x+4', 'y^2=39*x^6+22*x^5+8*x^4+27*x^3+8*x^2+x+24', 'y^2=23*x^6+39*x^5+22*x^4+35*x^3+30*x^2+10*x+34', 'y^2=15*x^6+29*x^5+9*x^4+5*x^3+16*x^2+19*x+40', 'y^2=12*x^6+17*x^5+3*x^4+24*x^3+31*x^2+34*x+2', 'y^2=x^6+x^3+6', 'y^2=4*x^6+11*x^5+36*x^4+34*x^3+32*x^2+4*x+31', 'y^2=24*x^6+25*x^5+11*x^4+40*x^3+28*x^2+24*x+22', 'y^2=35*x^6+6*x^5+32*x^4+19*x^3+4*x^2+21*x+4', 'y^2=5*x^6+36*x^5+28*x^4+32*x^3+24*x^2+3*x+24', 'y^2=2*x^6+14*x^5+11*x^4+24*x^3+32*x^2+x+38', 'y^2=35*x^6+14*x^5+20*x^4+28*x^3+7*x^2+31*x', 'y^2=5*x^6+2*x^5+38*x^4+4*x^3+x^2+22*x', 'y^2=33*x^6+x^5+8*x^4+8*x^3+24*x^2+10*x+3', 'y^2=21*x^6+7*x^5+3*x^4+32*x^3+16*x^2+26*x+6', 'y^2=18*x^6+15*x^5+3*x^4+36*x^3+6*x^2+7*x+25', 'y^2=26*x^6+8*x^5+18*x^4+11*x^3+36*x^2+x+27', 'y^2=36*x^6+4*x^5+39*x^4+29*x^3+24*x^2+36*x+6', 'y^2=11*x^6+24*x^5+29*x^4+10*x^3+21*x^2+11*x+36', 'y^2=29*x^6+5*x^5+32*x^4+29*x^3+22*x^2+16', 'y^2=10*x^6+30*x^5+28*x^4+10*x^3+9*x^2+14', 'y^2=13*x^6+7*x^5+19*x^4+8*x^3+36*x^2+35*x+22', 'y^2=37*x^6+x^5+32*x^4+7*x^3+11*x^2+5*x+9', 'y^2=12*x^6+12*x^5+12*x^4+24*x^3+34*x^2+20*x+35', 'y^2=31*x^6+31*x^5+31*x^4+21*x^3+40*x^2+38*x+5', 'y^2=9*x^6+16*x^5+7*x^4+6*x^3+4*x^2+35', 'y^2=13*x^6+14*x^5+x^4+36*x^3+24*x^2+5', 'y^2=24*x^6+8*x^5+6*x^4+35*x^3+30*x^2+36*x+17', 'y^2=21*x^6+7*x^5+36*x^4+5*x^3+16*x^2+11*x+20', 'y^2=2*x^6+2*x^5+6*x^4+20*x^3+40*x^2+2*x+33', 'y^2=12*x^6+12*x^5+36*x^4+38*x^3+35*x^2+12*x+34', 'y^2=31*x^6+40*x^5+2*x^4+25*x^3+31*x^2+21*x+2', 'y^2=22*x^6+35*x^5+12*x^4+27*x^3+22*x^2+3*x+12', 'y^2=21*x^6+16*x^5+x^4+19*x^3+2*x^2+25*x+15', 'y^2=3*x^6+14*x^5+6*x^4+32*x^3+12*x^2+27*x+8', 'y^2=2*x^6+24*x^5+36*x^4+9*x^3+23*x^2+29*x+20', 'y^2=12*x^6+21*x^5+11*x^4+13*x^3+15*x^2+10*x+38', 'y^2=33*x^6+21*x^5+20*x^4+9*x^3+16*x^2+11*x+28', 'y^2=34*x^6+3*x^5+38*x^4+13*x^3+14*x^2+25*x+4', 'y^2=40*x^6+40*x^5+9*x^4+19*x^3+33*x^2+38*x+18', 'y^2=35*x^6+35*x^5+13*x^4+32*x^3+34*x^2+23*x+26', 'y^2=14*x^6+21*x^4+40*x^3+10*x^2+2*x+7', 'y^2=2*x^6+3*x^4+35*x^3+19*x^2+12*x+1', 'y^2=12*x^6+17*x^4+19*x^3+26*x^2+6*x+24', 'y^2=31*x^6+20*x^4+32*x^3+33*x^2+36*x+21', 'y^2=16*x^6+10*x^5+11*x^4+10*x^3+33*x^2+35*x+3', 'y^2=14*x^6+19*x^5+25*x^4+19*x^3+34*x^2+5*x+18', 'y^2=9*x^6+22*x^5+14*x^4+x^3+22*x^2+25*x+26', 'y^2=13*x^6+9*x^5+2*x^4+6*x^3+9*x^2+27*x+33', 'y^2=19*x^6+24*x^5+38*x^4+5*x^3+27*x^2+33*x+10', 'y^2=32*x^6+21*x^5+23*x^4+30*x^3+39*x^2+34*x+19', 'y^2=8*x^6+3*x^5+38*x^4+5*x^3+20*x^2+24*x+38', 'y^2=27*x^6+6*x^5+22*x^4+19*x^3+23*x^2+21*x+12', 'y^2=39*x^6+36*x^5+9*x^4+32*x^3+15*x^2+3*x+31', 'y^2=25*x^6+18*x^5+29*x^4+x^3+27*x^2+20*x+16', 'y^2=21*x^6+25*x^5+11*x^4+18*x^3+15*x^2+35*x+30', 'y^2=3*x^6+27*x^5+25*x^4+26*x^3+8*x^2+5*x+16', 'y^2=32*x^6+6*x^5+12*x^4+16*x^3+18*x^2+11*x+6', 'y^2=28*x^6+36*x^5+31*x^4+14*x^3+26*x^2+25*x+36', 'y^2=23*x^6+4*x^5+19*x^4+22*x^3+x^2+22*x+30', 'y^2=15*x^6+24*x^5+32*x^4+9*x^3+6*x^2+9*x+16', 'y^2=20*x^6+10*x^5+3*x^4+7*x^3+28*x^2+6*x+24', 'y^2=38*x^6+19*x^5+18*x^4+x^3+4*x^2+36*x+21', 'y^2=38*x^6+2*x^5+18*x^4+32*x^3+x^2+30*x+20', 'y^2=23*x^6+12*x^5+26*x^4+28*x^3+6*x^2+16*x+38', 'y^2=16*x^6+39*x^5+32*x^4+19*x^3+23*x^2+40*x+19', 'y^2=14*x^6+29*x^5+28*x^4+32*x^3+15*x^2+35*x+32', 'y^2=2*x^6+24*x^4+9*x^3+38*x^2+37*x+4', 'y^2=12*x^6+21*x^4+13*x^3+23*x^2+17*x+24', 'y^2=33*x^6+18*x^5+39*x^4+2*x^3+11*x^2+24*x+27', 'y^2=34*x^6+26*x^5+29*x^4+12*x^3+25*x^2+21*x+39', 'y^2=4*x^6+40*x^5+31*x^4+21*x^3+8*x^2+17*x+15', 'y^2=24*x^6+35*x^5+22*x^4+3*x^3+7*x^2+20*x+8', 'y^2=14*x^6+38*x^5+20*x^4+17*x^3+25*x^2+9*x+2', 'y^2=2*x^6+23*x^5+38*x^4+20*x^3+27*x^2+13*x+12', 'y^2=35*x^6+32*x^5+37*x^4+12*x^3+9*x^2+21*x+26', 'y^2=5*x^6+28*x^5+17*x^4+31*x^3+13*x^2+3*x+33', 'y^2=21*x^5+10*x^4+18*x^3+25*x+5', 'y^2=3*x^5+19*x^4+26*x^3+27*x+30', 'y^2=40*x^6+25*x^5+14*x^4+32*x^3+39*x+33', 'y^2=35*x^6+27*x^5+2*x^4+28*x^3+29*x+34', 'y^2=22*x^6+11*x^5+8*x^4+2*x^3+23*x^2+29', 'y^2=9*x^6+25*x^5+7*x^4+12*x^3+15*x^2+10', 'y^2=17*x^6+39*x^5+23*x^4+20*x^3+33*x^2+27*x+16', 'y^2=20*x^6+29*x^5+15*x^4+38*x^3+34*x^2+39*x+14', 'y^2=12*x^6+18*x^5+18*x^4+3*x^3+20*x^2+18*x+30', 'y^2=31*x^6+26*x^5+26*x^4+18*x^3+38*x^2+26*x+16', 'y^2=35*x^6+2*x^5+20*x^4+40*x^3+10*x^2+34*x+18', 'y^2=8*x^6+13*x^5+34*x^4+18*x^3+7*x^2+14*x+16', 'y^2=7*x^6+37*x^5+40*x^4+26*x^3+x^2+2*x+14', 'y^2=40*x^6+6*x^5+31*x^4+7*x^3+6*x^2+11*x+21', 'y^2=35*x^6+36*x^5+22*x^4+x^3+36*x^2+25*x+3', 'y^2=15*x^5+31*x^4+11*x^3+28*x^2+2*x+9', 'y^2=8*x^5+22*x^4+25*x^3+4*x^2+12*x+13', 'y^2=35*x^6+3*x^5+32*x^4+7*x^3+5*x^2+19*x+15', 'y^2=5*x^6+18*x^5+28*x^4+x^3+30*x^2+32*x+8', 'y^2=20*x^6+7*x^5+4*x^4+13*x^3+33*x^2+3*x+18', 'y^2=38*x^6+x^5+24*x^4+37*x^3+34*x^2+18*x+26', 'y^2=16*x^6+2*x^4+26*x^3+24*x^2+36*x+30', 'y^2=14*x^6+12*x^4+33*x^3+21*x^2+11*x+16', 'y^2=2*x^6+13*x^5+32*x^4+36*x^3+12*x^2+14*x+15', 'y^2=15*x^6+36*x^5+25*x^4+15*x^3+27*x^2+32*x+27', 'y^2=8*x^6+11*x^5+27*x^4+8*x^3+39*x^2+28*x+39', 'y^2=35*x^6+27*x^5+27*x^4+13*x^3+16*x^2+39*x+13', 'y^2=5*x^6+39*x^5+39*x^4+37*x^3+14*x^2+29*x+37', 'y^2=13*x^6+14*x^5+33*x^4+9*x^3+35*x^2+27*x+35', 'y^2=37*x^6+2*x^5+34*x^4+13*x^3+5*x^2+39*x+5', 'y^2=35*x^6+24*x^5+7*x^4+12*x^3+3*x^2+35*x', 'y^2=5*x^6+21*x^5+x^4+31*x^3+18*x^2+5*x', 'y^2=16*x^6+6*x^5+38*x^4+36*x^3+26*x^2+17*x+27', 'y^2=14*x^6+36*x^5+23*x^4+11*x^3+33*x^2+20*x+39', 'y^2=x^6+x^3+27', 'y^2=7*x^6+20*x^5+4*x^4+23*x^3+33*x^2+33*x+29', 'y^2=x^6+38*x^5+24*x^4+15*x^3+34*x^2+34*x+10', 'y^2=x^6+9*x^5+38*x^4+10*x^3+4*x^2+9*x', 'y^2=6*x^6+13*x^5+23*x^4+19*x^3+24*x^2+13*x', 'y^2=23*x^6+14*x^5+21*x^4+2*x^3+33*x^2+18*x+26', 'y^2=3*x^6+24*x^5+14*x^4+37*x^3+22*x^2+2*x+10', 'y^2=18*x^6+21*x^5+2*x^4+17*x^3+9*x^2+12*x+19', 'y^2=20*x^6+8*x^5+15*x^4+17*x^3+28*x^2+25*x+36', 'y^2=38*x^6+7*x^5+8*x^4+20*x^3+4*x^2+27*x+11', 'y^2=14*x^6+2*x^4+x^3+34*x^2+6*x+24', 'y^2=25*x^6+39*x^5+33*x^4+6*x^3+8*x^2+30*x+18', 'y^2=26*x^6+39*x^5+12*x^4+12*x^3+14*x^2+19*x+21', 'y^2=33*x^6+29*x^5+31*x^4+31*x^3+2*x^2+32*x+3', 'y^2=33*x^6+39*x^5+39*x^4+6*x^3+16*x^2+34*x+27', 'y^2=34*x^6+29*x^5+29*x^4+36*x^3+14*x^2+40*x+39', 'y^2=5*x^6+26*x^5+7*x^4+18*x^3+3*x^2+x+30', 'y^2=30*x^6+33*x^5+x^4+26*x^3+18*x^2+6*x+16', 'y^2=9*x^6+2*x^5+30*x^4+20*x^3+37*x^2+28*x+2', 'y^2=13*x^6+12*x^5+16*x^4+38*x^3+17*x^2+4*x+12', 'y^2=32*x^6+9*x^5+27*x^4+38*x^3+31*x^2+38*x', 'y^2=28*x^6+13*x^5+39*x^4+23*x^3+22*x^2+23*x', 'y^2=17*x^6+24*x^5+27*x^4+8*x^3+36*x^2+34*x+20', 'y^2=20*x^6+21*x^5+39*x^4+7*x^3+11*x^2+40*x+38', 'y^2=9*x^6+37*x^5+36*x^4+30*x^3+35*x^2+36*x', 'y^2=13*x^6+17*x^5+11*x^4+16*x^3+5*x^2+11*x', 'y^2=7*x^6+9*x^5+x^4+24*x^3+2*x^2+39*x+19', 'y^2=x^6+13*x^5+6*x^4+21*x^3+12*x^2+29*x+32', 'y^2=8*x^6+3*x^5+18*x^4+27*x^3+11*x^2+40*x+34', 'y^2=7*x^6+18*x^5+26*x^4+39*x^3+25*x^2+35*x+40'], 'dim1_distinct': 0, 'dim1_factors': 0, 'dim2_distinct': 1, 'dim2_factors': 1, 'dim3_distinct': 0, 'dim3_factors': 0, 'dim4_distinct': 0, 'dim4_factors': 0, 'dim5_distinct': 0, 'dim5_factors': 0, 'endomorphism_ring_count': 4, 'g': 2, 'galois_groups': ['4T2'], 'geom_dim1_distinct': 1, 'geom_dim1_factors': 2, 'geom_dim2_distinct': 0, 'geom_dim2_factors': 0, 'geom_dim3_distinct': 0, 'geom_dim3_factors': 0, 'geom_dim4_distinct': 0, 'geom_dim4_factors': 0, 'geom_dim5_distinct': 0, 'geom_dim5_factors': 0, 'geometric_center_dim': 2, 'geometric_extension_degree': 2, 'geometric_galois_groups': ['2T1'], 'geometric_number_fields': ['2.0.456.1'], 'geometric_splitting_field': '2.0.456.1', 'geometric_splitting_polynomials': [[114, 0, 1]], 'group_structure_count': 3, 'has_geom_ss_factor': False, 'has_jacobian': 1, 'has_principal_polarization': 1, 'hyp_count': 156, 'id': 22335, 'is_cyclic': False, 'is_geometrically_simple': False, 'is_geometrically_squarefree': False, 'is_primitive': True, 'is_simple': True, 'is_squarefree': True, 'is_supersingular': False, 'jacobian_count': 156, 'label': '2.41.a_cs', 'max_divalg_dim': 1, 'max_geom_divalg_dim': 1, 'max_twist_degree': 12, 'newton_coelevation': 2, 'newton_elevation': 0, 'noncyclic_primes': [2], 'number_fields': ['4.0.831744.6'], 'p': 41, 'p_rank': 2, 'p_rank_deficit': 0, 'poly': [1, 0, 70, 0, 1681], 'poly_str': '1 0 70 0 1681 ', 'primitive_models': [], 'q': 41, 'real_poly': [1, 0, -12], 'simple_distinct': ['2.41.a_cs'], 'simple_factors': ['2.41.a_csA'], 'simple_multiplicities': [1], 'singular_primes': ['2,35*F+20*V+1'], 'slopes': ['0A', '0B', '1A', '1B'], 'splitting_field': '4.0.831744.6', 'splitting_polynomials': [[361, 0, 76, 0, 1]], 'twist_count': 4, 'twists': [['2.41.a_acs', '2.2825761.aeoi_rodkw', 4], ['2.41.ag_cb', '2.22563490300366186081.ciwibjrw_cbuvcrxlzyvrwyg', 12], ['2.41.g_cb', '2.22563490300366186081.ciwibjrw_cbuvcrxlzyvrwyg', 12]], 'weak_equivalence_count': 5, 'zfv_index': 8, 'zfv_index_factorization': [[2, 3]], 'zfv_is_bass': False, 'zfv_is_maximal': False, 'zfv_plus_index': 2, 'zfv_plus_index_factorization': [[2, 1]], 'zfv_plus_norm': 23104, 'zfv_singular_count': 2, 'zfv_singular_primes': ['2,35*F+20*V+1']}