Formats: - HTML - YAML - JSON - 2026-02-08T23:39:51.507291
Query: /api/av_fq_isog/?_offset=0
Show schema

{'abvar_count': 1152, 'abvar_counts': [1152, 1032192, 878387328, 850939084800, 819923911604352, 787684349800857600, 756939012828955085952, 727423089646141911859200, 699053575283668610234506368, 671790535320067767540084621312], 'abvar_counts_str': '1152 1032192 878387328 850939084800 819923911604352 787684349800857600 756939012828955085952 727423089646141911859200 699053575283668610234506368 671790535320067767540084621312 ', 'angle_corank': 1, 'angle_rank': 1, 'angles': [0.5, 0.616954024640961], 'center_dim': 4, 'cohen_macaulay_max': 3, 'curve_count': 36, 'curve_counts': [36, 1070, 29484, 921406, 28639476, 887527982, 27512435196, 852890999806, 26439620469444, 819628294912430], 'curve_counts_str': '36 1070 29484 921406 28639476 887527982 27512435196 852890999806 26439620469444 819628294912430 ', 'curves': ['y^2=5*x^6+15*x^5+8*x^4+15*x^3+28*x^2+21*x+9', 'y^2=11*x^6+29*x^5+25*x^4+x^3+25*x^2+29*x+11', 'y^2=10*x^6+12*x^5+29*x^4+18*x^3+5*x^2+22*x+9', 'y^2=14*x^6+7*x^5+4*x^4+14*x^3+4*x^2+7*x+14', 'y^2=8*x^6+17*x^5+27*x^4+21*x^3+27*x^2+17*x+8', 'y^2=29*x^6+x^5+20*x^4+x^3+5*x^2+8*x+17', 'y^2=8*x^6+9*x^5+7*x^4+2*x^3+21*x^2+24*x+5', 'y^2=19*x^6+2*x^5+14*x^4+23*x^3+27*x^2+15*x+20', 'y^2=14*x^6+17*x^5+2*x^4+16*x^3+4*x^2+6*x+19', 'y^2=16*x^6+28*x^5+23*x^4+23*x^3+23*x^2+28*x+16', 'y^2=11*x^6+13*x^5+13*x^4+x^3+10*x^2+27*x+20', 'y^2=9*x^6+3*x^5+20*x^4+16*x^3+10*x^2+24*x+5', 'y^2=10*x^6+5*x^5+27*x^4+24*x^3+27*x^2+5*x+10', 'y^2=3*x^6+15*x^5+12*x^4+21*x^3+12*x^2+15*x+3', 'y^2=15*x^6+18*x^5+25*x^4+2*x^3+25*x^2+18*x+15', 'y^2=9*x^6+2*x^5+27*x^4+13*x^3+27*x^2+12*x+23', 'y^2=7*x^6+7*x^5+21*x^4+5*x^3+16*x^2+10*x+10', 'y^2=5*x^6+30*x^5+12*x^4+12*x^3+21*x^2+26*x+5', 'y^2=18*x^6+13*x^5+25*x^4+17*x^3+25*x^2+13*x+18', 'y^2=3*x^6+5*x^5+8*x^4+23*x^3+x^2+3*x+9', 'y^2=23*x^6+26*x^5+8*x^4+25*x^3+14*x^2+6*x+23', 'y^2=21*x^6+14*x^5+16*x^4+13*x^3+16*x^2+14*x+21', 'y^2=7*x^6+4*x^5+26*x^4+14*x^3+12*x^2+28*x+25', 'y^2=10*x^6+9*x^5+29*x^4+20*x^3+29*x^2+9*x+10', 'y^2=6*x^6+17*x^5+19*x^4+11*x^3+19*x^2+17*x+6', 'y^2=x^6+8*x^5+16*x^3+8*x+1', 'y^2=25*x^6+8*x^5+3*x^4+10*x^3+6*x^2+2*x+4', 'y^2=3*x^6+16*x^5+8*x^4+13*x^3+8*x^2+8*x+8', 'y^2=30*x^6+27*x^5+3*x^4+2*x^3+23*x^2+6*x+27', 'y^2=7*x^6+15*x^5+19*x^4+16*x^3+19*x^2+15*x+7', 'y^2=20*x^6+23*x^5+24*x^4+23*x^3+24*x^2+23*x+20', 'y^2=4*x^6+10*x^5+10*x^4+15*x^3+10*x^2+10*x+4', 'y^2=26*x^6+28*x^5+22*x^4+20*x^3+27*x^2+16*x+8', 'y^2=27*x^6+15*x^5+12*x^4+26*x^3+17*x^2+23*x+23', 'y^2=x^6+x^5+15*x^4+x^3+15*x^2+x+1', 'y^2=20*x^6+17*x^5+17*x^4+21*x^3+29*x^2+30*x+19', 'y^2=19*x^6+x^5+11*x^4+12*x^3+9*x^2+28*x+8', 'y^2=x^6+2*x^5+13*x^4+26*x^3+22*x^2+6*x+22', 'y^2=x^6+19*x^5+x^4+10*x^3+4*x^2+25*x+2', 'y^2=22*x^6+x^5+10*x^4+14*x^3+10*x^2+x+22', 'y^2=22*x^6+6*x^5+13*x^4+21*x^3+12*x^2+13*x+13', 'y^2=9*x^6+18*x^5+18*x^4+28*x^3+18*x^2+18*x+9', 'y^2=14*x^6+16*x^5+6*x^4+21*x^3+12*x^2+2*x+19', 'y^2=26*x^6+30*x^5+21*x^4+10*x^3+21*x^2+30*x+26', 'y^2=9*x^6+10*x^5+10*x^4+16*x^3+x^2+20*x+15', 'y^2=12*x^6+24*x^5+30*x^4+25*x^3+30*x^2+24*x+12', 'y^2=27*x^6+25*x^5+22*x^4+8*x^3+22*x^2+25*x+27', 'y^2=x^6+14*x^5+30*x^4+6*x^3+29*x^2+25*x+8', 'y^2=13*x^6+12*x^5+13*x^4+3*x^3+13*x^2+12*x+13', 'y^2=29*x^6+x^5+3*x^4+11*x^3+7*x^2+18*x+18', 'y^2=18*x^6+27*x^5+18*x^4+23*x^3+8*x^2+26*x+10', 'y^2=18*x^6+x^5+x^4+8*x^3+x^2+x+18', 'y^2=28*x^6+x^5+30*x^4+7*x^3+18*x^2+19*x+15', 'y^2=13*x^6+16*x^5+3*x^4+17*x^3+23*x^2+7*x+21', 'y^2=26*x^6+21*x^5+14*x^4+29*x^3+14*x^2+21*x+26', 'y^2=20*x^6+9*x^5+2*x^3+28*x^2+13*x+10', 'y^2=18*x^6+18*x^5+6*x^4+12*x^3+21*x^2+3*x+20', 'y^2=30*x^6+17*x^5+20*x^4+14*x^3+7*x^2+22*x+30', 'y^2=16*x^6+18*x^5+20*x^4+22*x^3+20*x^2+18*x+16', 'y^2=7*x^6+8*x^5+8*x^4+13*x^3+8*x^2+15*x+15', 'y^2=29*x^6+5*x^5+4*x^4+15*x^3+23*x^2+6*x+19', 'y^2=25*x^6+23*x^5+29*x^4+15*x^3+30*x^2+14*x+1', 'y^2=29*x^5+4*x^4+18*x^3+5*x^2+24*x', 'y^2=10*x^6+x^5+29*x^4+5*x^3+29*x^2+x+10', 'y^2=7*x^5+17*x^4+20*x^3+11*x^2+x', 'y^2=20*x^6+12*x^5+20*x^4+14*x^3+20*x^2+12*x+20', 'y^2=25*x^6+30*x^5+20*x^4+12*x^3+16*x^2+x+17', 'y^2=17*x^6+4*x^5+24*x^4+30*x^3+24*x^2+4*x+17', 'y^2=25*x^6+20*x^5+14*x^4+26*x^3+14*x^2+20*x+25', 'y^2=10*x^6+30*x^5+18*x^3+20*x^2+7*x+10', 'y^2=18*x^6+5*x^5+9*x^4+25*x^3+28*x^2+4*x+20', 'y^2=21*x^6+23*x^5+18*x^4+23*x^3+18*x^2+23*x+21'], 'dim1_distinct': 2, 'dim1_factors': 2, 'dim2_distinct': 0, 'dim2_factors': 0, 'dim3_distinct': 0, 'dim3_factors': 0, 'dim4_distinct': 0, 'dim4_factors': 0, 'dim5_distinct': 0, 'dim5_factors': 0, 'endomorphism_ring_count': 28, 'g': 2, 'galois_groups': ['2T1', '2T1'], 'geom_dim1_distinct': 2, 'geom_dim1_factors': 2, 'geom_dim2_distinct': 0, 'geom_dim2_factors': 0, 'geom_dim3_distinct': 0, 'geom_dim3_factors': 0, 'geom_dim4_distinct': 0, 'geom_dim4_factors': 0, 'geom_dim5_distinct': 0, 'geom_dim5_factors': 0, 'geometric_center_dim': 3, 'geometric_extension_degree': 2, 'geometric_galois_groups': ['1T1', '2T1'], 'geometric_number_fields': ['1.1.1.1', '2.0.3.1'], 'geometric_splitting_field': '2.0.3.1', 'geometric_splitting_polynomials': [[1, -1, 1]], 'group_structure_count': 14, 'has_geom_ss_factor': True, 'has_jacobian': 1, 'has_principal_polarization': 1, 'hyp_count': 72, 'id': 16849, 'is_cyclic': False, 'is_geometrically_simple': False, 'is_geometrically_squarefree': True, 'is_primitive': True, 'is_simple': False, 'is_squarefree': True, 'is_supersingular': False, 'jacobian_count': 72, 'label': '2.31.e_ck', 'max_divalg_dim': 1, 'max_geom_divalg_dim': 4, 'max_twist_degree': 6, 'newton_coelevation': 1, 'newton_elevation': 1, 'noncyclic_primes': [2, 3], 'number_fields': ['2.0.31.1', '2.0.3.1'], 'p': 31, 'p_rank': 1, 'p_rank_deficit': 1, 'poly': [1, 4, 62, 124, 961], 'poly_str': '1 4 62 124 961 ', 'primitive_models': [], 'q': 31, 'real_poly': [1, 4], 'simple_distinct': ['1.31.a', '1.31.e'], 'simple_factors': ['1.31.aA', '1.31.eA'], 'simple_multiplicities': [1, 1], 'singular_primes': ['2,-3*V-3', '3,F+5*V'], 'slopes': ['0A', '1/2A', '1/2B', '1A'], 'splitting_field': '4.0.8649.1', 'splitting_polynomials': [[64, -8, -7, -1, 1]], 'twist_count': 6, 'twists': [['2.31.ae_ck', '2.961.ee_hbq', 2], ['2.31.al_ck', '2.29791.alw_dkdq', 3], ['2.31.h_ck', '2.29791.alw_dkdq', 3], ['2.31.ah_ck', '2.887503681.bjyq_abbnyhoc', 6], ['2.31.l_ck', '2.887503681.bjyq_abbnyhoc', 6]], 'weak_equivalence_count': 48, 'zfv_index': 192, 'zfv_index_factorization': [[2, 6], [3, 1]], 'zfv_is_bass': False, 'zfv_is_maximal': False, 'zfv_plus_index': 1, 'zfv_plus_index_factorization': [], 'zfv_plus_norm': 13392, 'zfv_singular_count': 4, 'zfv_singular_primes': ['2,-3*V-3', '3,F+5*V']}