Query:
/api/av_fq_isog/?_offset=0
{'abvar_count': 1062, 'abvar_counts': [1062, 745524, 595281798, 500565688272, 420376412404422, 353837737800196884, 297563753479755560166, 250245955119797391725568, 210457288314193696263850806, 176994555827032474922416574484], 'abvar_counts_str': '1062 745524 595281798 500565688272 420376412404422 353837737800196884 297563753479755560166 250245955119797391725568 210457288314193696263850806 176994555827032474922416574484 ', 'angle_corank': 0, 'angle_rank': 2, 'angles': [0.434635775423379, 0.775288189837721], 'center_dim': 4, 'cohen_macaulay_max': 1, 'curve_count': 36, 'curve_counts': [36, 886, 24408, 707734, 20495016, 594861910, 17250196356, 500245376350, 14507146248084, 420707184990886], 'curve_counts_str': '36 886 24408 707734 20495016 594861910 17250196356 500245376350 14507146248084 420707184990886 ', 'curves': ['y^2=17*x^6+14*x^5+10*x^4+22*x^3+22*x^2+12*x+21', 'y^2=4*x^6+4*x^5+10*x^4+2*x^3+27*x^2+25*x+27', 'y^2=6*x^6+9*x^5+3*x^4+25*x^3+22*x^2+5*x+11', 'y^2=16*x^6+27*x^5+19*x^4+20*x^3+4*x^2+2*x+16', 'y^2=5*x^6+23*x^5+15*x^3+20*x^2+26*x+2', 'y^2=24*x^6+7*x^5+12*x^4+7*x^3+5*x^2+11*x+6', 'y^2=3*x^6+22*x^5+27*x^4+10*x^3+23*x^2+20*x+13', 'y^2=15*x^6+21*x^5+5*x^4+25*x^3+26*x^2+11*x+8', 'y^2=25*x^6+2*x^5+x^4+16*x^3+19*x^2+23*x+13', 'y^2=13*x^6+27*x^5+26*x^4+13*x^3+2*x^2+2*x+24', 'y^2=7*x^6+15*x^5+21*x^3+26*x^2+12*x+5', 'y^2=19*x^6+12*x^5+11*x^4+13*x^3+12*x^2+27*x+26', 'y^2=23*x^6+5*x^5+2*x^4+19*x^3+25*x^2+24*x+28', 'y^2=x^6+14*x^5+26*x^4+28*x^2+24*x+15', 'y^2=7*x^6+25*x^5+23*x^4+24*x^3+7*x^2+3', 'y^2=24*x^6+11*x^5+24*x^4+19*x^3+3*x^2+26*x', 'y^2=9*x^5+28*x^4+x^3+3*x^2+20*x+12', 'y^2=20*x^6+19*x^4+27*x^3+21*x^2+16*x+13', 'y^2=15*x^6+18*x^5+2*x^4+19*x^3+25*x^2+22*x+5', 'y^2=20*x^6+7*x^5+20*x^4+28*x^2+10*x+3', 'y^2=10*x^6+10*x^5+22*x^4+28*x^3+14*x^2+26*x+16', 'y^2=7*x^6+20*x^5+27*x^4+6*x^3+8*x+11', 'y^2=25*x^6+27*x^5+28*x^4+25*x^3+17*x^2+17*x+6', 'y^2=23*x^6+9*x^5+10*x^4+17*x^3+x^2+18*x+23', 'y^2=28*x^6+21*x^5+25*x^4+3*x^3+7*x^2+27*x+7', 'y^2=22*x^6+16*x^5+17*x^4+16*x^3+6*x^2+2*x+20', 'y^2=28*x^6+8*x^5+15*x^4+7*x^3+2*x^2+27*x+2', 'y^2=27*x^6+28*x^5+28*x^4+18*x^3+16*x^2+11*x+27', 'y^2=15*x^6+3*x^5+26*x^3+13*x^2+6*x+7', 'y^2=4*x^6+21*x^5+7*x^4+28*x^3+20*x^2+25*x+18', 'y^2=7*x^6+x^5+7*x^4+12*x^3+2*x^2+22*x+1', 'y^2=18*x^6+19*x^5+11*x^4+8*x^3+23*x^2+16*x+5', 'y^2=23*x^6+14*x^5+10*x^4+6*x^3+3*x^2+19*x+16', 'y^2=28*x^6+9*x^5+11*x^4+4*x^2+5*x+16', 'y^2=19*x^6+9*x^5+12*x^4+23*x^3+5*x^2+7*x+19', 'y^2=8*x^6+23*x^5+12*x^4+16*x^3+23*x^2+6*x+28', 'y^2=9*x^6+16*x^5+26*x^3+20*x^2+13*x+12', 'y^2=19*x^6+13*x^5+8*x^4+2*x^3+22*x^2+25*x+23', 'y^2=16*x^6+11*x^5+8*x^4+27*x^3+16*x^2+14*x', 'y^2=19*x^6+18*x^5+6*x^4+16*x^3+15*x^2+19*x+13', 'y^2=13*x^6+26*x^5+21*x^4+15*x^3+10*x^2+13*x+1', 'y^2=22*x^6+25*x^5+6*x^4+12*x^2+8*x+12', 'y^2=x^6+21*x^5+14*x^4+12*x^3+21*x^2+9*x+5', 'y^2=5*x^6+25*x^5+23*x^4+17*x^3+6*x^2+14*x+6', 'y^2=14*x^6+4*x^5+19*x^4+27*x^3+16*x^2+5*x+17', 'y^2=16*x^6+9*x^5+20*x^4+26*x^3+22*x^2+27*x+18', 'y^2=7*x^6+5*x^5+17*x^4+22*x^3+8*x^2+14*x+25', 'y^2=9*x^6+5*x^5+8*x^4+12*x^3+23*x^2+20*x+10', 'y^2=19*x^6+9*x^5+27*x^4+23*x^3+24*x^2+7*x+18', 'y^2=21*x^6+20*x^5+12*x^4+28*x^3+3*x^2+16*x+6', 'y^2=17*x^6+18*x^5+21*x^4+24*x^3+16*x^2+9*x+21', 'y^2=5*x^6+3*x^5+10*x^4+23*x^3+15*x^2+28*x+28', 'y^2=11*x^6+12*x^5+24*x^4+12*x^3+21*x^2+3*x+28', 'y^2=26*x^6+6*x^5+19*x^4+13*x^3+2*x^2+14*x+11', 'y^2=16*x^6+21*x^5+22*x^4+26*x^2+16*x+6', 'y^2=18*x^6+11*x^5+5*x^4+10*x^3+20*x^2+28*x+28', 'y^2=22*x^6+25*x^5+20*x^4+23*x^3+15*x^2+13*x+12', 'y^2=8*x^6+20*x^5+12*x^4+19*x^3+16*x^2+2*x+22', 'y^2=x^6+23*x^5+10*x^4+10*x^3+16*x^2+13*x+23', 'y^2=13*x^6+25*x^5+x^4+23*x^3+10*x^2+24*x+1', 'y^2=4*x^6+18*x^5+7*x^4+13*x^2+2*x+19', 'y^2=x^6+17*x^5+18*x^4+27*x^3+25*x^2+9*x+21', 'y^2=12*x^6+17*x^5+16*x^4+8*x^3+23*x^2+3*x+25', 'y^2=13*x^6+8*x^5+18*x^4+19*x^2+13*x+25'], 'dim1_distinct': 0, 'dim1_factors': 0, 'dim2_distinct': 1, 'dim2_factors': 1, 'dim3_distinct': 0, 'dim3_factors': 0, 'dim4_distinct': 0, 'dim4_factors': 0, 'dim5_distinct': 0, 'dim5_factors': 0, 'endomorphism_ring_count': 4, 'g': 2, 'galois_groups': ['4T3'], 'geom_dim1_distinct': 0, 'geom_dim1_factors': 0, 'geom_dim2_distinct': 1, 'geom_dim2_factors': 1, 'geom_dim3_distinct': 0, 'geom_dim3_factors': 0, 'geom_dim4_distinct': 0, 'geom_dim4_factors': 0, 'geom_dim5_distinct': 0, 'geom_dim5_factors': 0, 'geometric_center_dim': 4, 'geometric_extension_degree': 1, 'geometric_galois_groups': ['4T3'], 'geometric_number_fields': ['4.0.781632.1'], 'geometric_splitting_field': '4.0.781632.1', 'geometric_splitting_polynomials': [[366, -12, 40, -2, 1]], 'group_structure_count': 2, 'has_geom_ss_factor': False, 'has_jacobian': 1, 'has_principal_polarization': 1, 'hyp_count': 64, 'id': 15152, 'is_geometrically_simple': True, 'is_geometrically_squarefree': True, 'is_primitive': True, 'is_simple': True, 'is_squarefree': True, 'is_supersingular': False, 'jacobian_count': 64, 'label': '2.29.g_bo', 'max_divalg_dim': 1, 'max_geom_divalg_dim': 1, 'max_twist_degree': 2, 'newton_coelevation': 2, 'newton_elevation': 0, 'number_fields': ['4.0.781632.1'], 'p': 29, 'p_rank': 2, 'p_rank_deficit': 0, 'poly': [1, 6, 40, 174, 841], 'poly_str': '1 6 40 174 841 ', 'primitive_models': [], 'q': 29, 'real_poly': [1, 6, -18], 'simple_distinct': ['2.29.g_bo'], 'simple_factors': ['2.29.g_boA'], 'simple_multiplicities': [1], 'singular_primes': ['3,2*F+3*V+17', '3,F^2-3*F-V-11'], 'slopes': ['0A', '0B', '1A', '1B'], 'splitting_field': '4.0.781632.1', 'splitting_polynomials': [[366, -12, 40, -2, 1]], 'twist_count': 2, 'twists': [['2.29.ag_bo', '2.841.bs_bty', 2]], 'weak_equivalence_count': 4, 'zfv_index': 9, 'zfv_index_factorization': [[3, 2]], 'zfv_is_bass': True, 'zfv_is_maximal': False, 'zfv_plus_index': 3, 'zfv_plus_index_factorization': [[3, 1]], 'zfv_plus_norm': 5428, 'zfv_singular_count': 4, 'zfv_singular_primes': ['3,2*F+3*V+17', '3,F^2-3*F-V-11']}