Invariants
Weight: | $10$ |
Degree: | $2$ |
$\mathbb{R}$-dimension: | $3$ |
Components: | $360$ |
Contained in: | $\mathrm{O}(2)$ |
Rational: | yes |
Identity component
Name: | $\mathrm{SU}(2)$ | ||
$\mathbb{R}$-dimension: | $3$ | ||
Description: | $\left\{\begin{bmatrix}\alpha&\beta\\-\bar\beta&\bar\alpha\end{bmatrix}:\alpha\bar\alpha+\beta\bar\beta = 1,\ \alpha,\beta\in\mathbb{C}\right\}$ | Symplectic form: | $\begin{bmatrix}0&1\\-1&0\end{bmatrix}$ |
Hodge circle: | $u\mapsto\mathrm{diag}(u,\bar u)$ |
Component group
Name: | $C_{360}$ |
Order: | $360$ |
Abelian: | yes |
Generators: | $\begin{bmatrix}1&0\\0&\zeta_{360}\end{bmatrix}$ |
Subgroups and supergroups
Moment sequences
$x$ | $\mathrm{E}[x^{0}]$ | $\mathrm{E}[x^{1}]$ | $\mathrm{E}[x^{2}]$ | $\mathrm{E}[x^{3}]$ | $\mathrm{E}[x^{4}]$ | $\mathrm{E}[x^{5}]$ | $\mathrm{E}[x^{6}]$ | $\mathrm{E}[x^{7}]$ | $\mathrm{E}[x^{8}]$ | $\mathrm{E}[x^{9}]$ | $\mathrm{E}[x^{10}]$ | $\mathrm{E}[x^{11}]$ | $\mathrm{E}[x^{12}]$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_1$ | $1$ | $0$ | $0$ | $0$ | $0$ | $0$ | $0$ | $0$ | $0$ | $0$ | $0$ | $0$ | $0$ |