Learn more

Refine search


Results (1-50 of 441626 matches)

Next   displayed columns for results
Label Polynomial Discriminant Galois group Class group Regulator
2.2.100001.1 x2x25000x^{2} - x - 25000 11909111\cdot 9091 C2C_2 (as 2T1) trivial 252.836785257252.836785257
2.2.100005.1 x2x25001x^{2} - x - 25001 35591133\cdot 5\cdot 59\cdot 113 C2C_2 (as 2T1) [2,2][2, 2] 22.587372001222.5873720012
2.2.100012.1 x225003x^{2} - 25003 221122732^{2}\cdot 11\cdot 2273 C2C_2 (as 2T1) [2][2] 95.710074596895.7100745968
2.2.100013.1 x2x25003x^{2} - x - 25003 103971103\cdot 971 C2C_2 (as 2T1) trivial 107.371687794107.371687794
2.2.100021.1 x2x25005x^{2} - x - 25005 29344929\cdot 3449 C2C_2 (as 2T1) [2][2] 94.826460579994.8264605799
2.2.100024.1 x225006x^{2} - 25006 23125032^{3}\cdot 12503 C2C_2 (as 2T1) trivial 359.856550408359.856550408
2.2.100028.1 x225007x^{2} - 25007 221714712^{2}\cdot 17\cdot 1471 C2C_2 (as 2T1) [4][4] 24.4666304924.46663049
2.2.100029.1 x2x25007x^{2} - x - 25007 3333433\cdot 33343 C2C_2 (as 2T1) trivial 79.095744408979.0957444089
2.2.100033.1 x2x25008x^{2} - x - 25008 167599167\cdot 599 C2C_2 (as 2T1) trivial 277.189639362277.189639362
2.2.100037.1 x2x25009x^{2} - x - 25009 7314617\cdot 31\cdot 461 C2C_2 (as 2T1) [2][2] 36.126307292436.1263072924
2.2.100040.1 x225010x^{2} - 25010 23541612^{3}\cdot 5\cdot 41\cdot 61 C2C_2 (as 2T1) [2,2,2][2, 2, 2] 11.691556888211.6915568882
2.2.100041.1 x2x25010x^{2} - x - 25010 3333473\cdot 33347 C2C_2 (as 2T1) trivial 473.902406902473.902406902
2.2.100045.1 x2x25011x^{2} - x - 25011 511171075\cdot 11\cdot 17\cdot 107 C2C_2 (as 2T1) [2,2][2, 2] 53.535481550153.5354815501
2.2.100049.1 x2x25012x^{2} - x - 25012 100049100049 C2C_2 (as 2T1) trivial 311.201133132311.201133132
2.2.100056.1 x225014x^{2} - 25014 233113792^{3}\cdot 3\cdot 11\cdot 379 C2C_2 (as 2T1) [2,4][2, 4] 21.212004981421.2120049814
2.2.100057.1 x2x25014x^{2} - x - 25014 100057100057 C2C_2 (as 2T1) trivial 372.969796034372.969796034
2.2.100060.1 x225015x^{2} - 25015 22550032^{2}\cdot 5\cdot 5003 C2C_2 (as 2T1) [2][2] 169.318557727169.318557727
2.2.100061.1 x2x25015x^{2} - x - 25015 134317913\cdot 43\cdot 179 C2C_2 (as 2T1) [8][8] 11.145839369511.1458393695
2.2.100065.1 x2x25016x^{2} - x - 25016 3579533\cdot 5\cdot 7\cdot 953 C2C_2 (as 2T1) [2,2][2, 2] 95.939599010795.9395990107
2.2.100069.1 x2x25017x^{2} - x - 25017 100069100069 C2C_2 (as 2T1) [3][3] 56.424300409956.4243004099
2.2.100072.1 x225018x^{2} - 25018 23717872^{3}\cdot 7\cdot 1787 C2C_2 (as 2T1) [2][2] 89.250870165289.2508701652
2.2.100073.1 x2x25018x^{2} - x - 25018 192322919\cdot 23\cdot 229 C2C_2 (as 2T1) [2][2] 112.994585093112.994585093
2.2.100076.1 x225019x^{2} - 25019 221271972^{2}\cdot 127\cdot 197 C2C_2 (as 2T1) [2][2] 87.626604973887.6266049738
2.2.100077.1 x2x25019x^{2} - x - 25019 3333593\cdot 33359 C2C_2 (as 2T1) trivial 96.406520065596.4065200655
2.2.100081.1 x2x25020x^{2} - x - 25020 41244141\cdot 2441 C2C_2 (as 2T1) [2][2] 346.789112425346.789112425
2.2.100085.1 x2x25021x^{2} - x - 25021 5375415\cdot 37\cdot 541 C2C_2 (as 2T1) [2,2][2, 2] 15.56699805515.566998055
2.2.100088.1 x225022x^{2} - 25022 23125112^{3}\cdot 12511 C2C_2 (as 2T1) trivial 114.97541987114.97541987
2.2.100092.1 x225023x^{2} - 25023 223194392^{2}\cdot 3\cdot 19\cdot 439 C2C_2 (as 2T1) [2,2][2, 2] 32.647934193832.6479341938
2.2.100093.1 x2x25023x^{2} - x - 25023 7791817\cdot 79\cdot 181 C2C_2 (as 2T1) [2][2] 62.504252399662.5042523996
2.2.100097.1 x2x25024x^{2} - x - 25024 199503199\cdot 503 C2C_2 (as 2T1) trivial 267.660496805267.660496805
2.2.100101.1 x2x25025x^{2} - x - 25025 3615473\cdot 61\cdot 547 C2C_2 (as 2T1) [2][2] 94.498446993894.4984469938
2.2.100104.1 x225026x^{2} - 25026 23343972^{3}\cdot 3\cdot 43\cdot 97 C2C_2 (as 2T1) [2,8][2, 8] 18.684468994118.6844689941
2.2.100105.1 x2x25026x^{2} - x - 25026 5200215\cdot 20021 C2C_2 (as 2T1) [4][4] 106.933921758106.933921758
2.2.100108.1 x225027x^{2} - 25027 22298632^{2}\cdot 29\cdot 863 C2C_2 (as 2T1) [2][2] 104.239334852104.239334852
2.2.100109.1 x2x25027x^{2} - x - 25027 100109100109 C2C_2 (as 2T1) [19][19] 8.059592428788.05959242878
2.2.100113.1 x2x25028x^{2} - x - 25028 313171513\cdot 13\cdot 17\cdot 151 C2C_2 (as 2T1) [2,2][2, 2] 60.350222203760.3502222037
2.2.100117.1 x2x25029x^{2} - x - 25029 53188953\cdot 1889 C2C_2 (as 2T1) [2][2] 71.383527175971.3835271759
2.2.100120.1 x225030x^{2} - 25030 23525032^{3}\cdot 5\cdot 2503 C2C_2 (as 2T1) [10][10] 21.447569078421.4475690784
2.2.100121.1 x2x25030x^{2} - x - 25030 7143037\cdot 14303 C2C_2 (as 2T1) trivial 295.369751223295.369751223
2.2.100124.1 x225031x^{2} - 25031 22250312^{2}\cdot 25031 C2C_2 (as 2T1) [3][3] 35.487986972935.4879869729
2.2.100129.1 x2x25032x^{2} - x - 25032 100129100129 C2C_2 (as 2T1) trivial 631.6155772631.6155772
2.2.100133.1 x2x25033x^{2} - x - 25033 11910311\cdot 9103 C2C_2 (as 2T1) trivial 44.906284525544.9062845255
2.2.100136.1 x225034x^{2} - 25034 23125172^{3}\cdot 12517 C2C_2 (as 2T1) [2][2] 89.511310674689.5113106746
2.2.100137.1 x2x25034x^{2} - x - 25034 32911513\cdot 29\cdot 1151 C2C_2 (as 2T1) [2][2] 165.074423393165.074423393
2.2.100140.1 x225035x^{2} - 25035 223516692^{2}\cdot 3\cdot 5\cdot 1669 C2C_2 (as 2T1) [2,2][2, 2] 28.456028588728.4560285887
2.2.100141.1 x2x25035x^{2} - x - 25035 239419239\cdot 419 C2C_2 (as 2T1) trivial 113.339305889113.339305889
2.2.100145.1 x2x25036x^{2} - x - 25036 5200295\cdot 20029 C2C_2 (as 2T1) [2][2] 110.407749404110.407749404
2.2.100149.1 x2x25037x^{2} - x - 25037 37192513\cdot 7\cdot 19\cdot 251 C2C_2 (as 2T1) [2,2][2, 2] 39.389340860439.3893408604
2.2.100153.1 x2x25038x^{2} - x - 25038 100153100153 C2C_2 (as 2T1) trivial 523.870767222523.870767222
2.2.100157.1 x2x25039x^{2} - x - 25039 47213147\cdot 2131 C2C_2 (as 2T1) trivial 58.922843551858.9228435518
Next   displayed columns for results