Note: Search results may be incomplete. Given $p$-adic completions contain an unramified field and completions are only searched for ramified primes.
Refine search
Label | Polynomial | Discriminant | Galois group | Class group |
---|---|---|---|---|
3.1.268.1 | $x^{3} - x^{2} - 3 x + 5$ | $-\,2^{2}\cdot 67$ | $S_3$ (as 3T2) | trivial |
3.1.335.1 | $x^{3} - x^{2} + 4 x + 1$ | $-\,5\cdot 67$ | $S_3$ (as 3T2) | trivial |
3.3.469.1 | $x^{3} - x^{2} - 5 x + 4$ | $7\cdot 67$ | $S_3$ (as 3T2) | trivial |
3.1.804.1 | $x^{3} - x^{2} + 4 x - 6$ | $-\,2^{2}\cdot 3\cdot 67$ | $S_3$ (as 3T2) | trivial |
3.1.1407.1 | $x^{3} - x^{2} - 8 x - 9$ | $-\,3\cdot 7\cdot 67$ | $S_3$ (as 3T2) | trivial |
3.1.1675.1 | $x^{3} - x^{2} + 7 x + 2$ | $-\,5^{2}\cdot 67$ | $S_3$ (as 3T2) | trivial |
3.1.2479.1 | $x^{3} - 11 x - 17$ | $-\,37\cdot 67$ | $S_3$ (as 3T2) | trivial |
3.1.2680.1 | $x^{3} - x^{2} + 20$ | $-\,2^{3}\cdot 5\cdot 67$ | $S_3$ (as 3T2) | trivial |
3.1.2747.1 | $x^{3} - x^{2} + x + 30$ | $-\,41\cdot 67$ | $S_3$ (as 3T2) | trivial |
3.1.4087.1 | $x^{3} - x^{2} + 2 x + 24$ | $-\,61\cdot 67$ | $S_3$ (as 3T2) | trivial |
3.1.4556.1 | $x^{3} - x^{2} + 3 x + 25$ | $-\,2^{2}\cdot 17\cdot 67$ | $S_3$ (as 3T2) | trivial |
3.1.4623.1 | $x^{3} - x^{2} - 18 x + 39$ | $-\,3\cdot 23\cdot 67$ | $S_3$ (as 3T2) | trivial |
3.1.5427.1 | $x^{3} + 6 x - 13$ | $-\,3^{4}\cdot 67$ | $S_3$ (as 3T2) | trivial |
3.1.5963.1 | $x^{3} - x^{2} + 11 x - 10$ | $-\,67\cdot 89$ | $S_3$ (as 3T2) | $[4]$ |
3.1.6164.1 | $x^{3} - x^{2} + 13 x - 29$ | $-\,2^{2}\cdot 23\cdot 67$ | $S_3$ (as 3T2) | $[5]$ |
3.1.6700.1 | $x^{3} - x^{2} - 3 x + 17$ | $-\,2^{2}\cdot 5^{2}\cdot 67$ | $S_3$ (as 3T2) | $[3]$ |
3.1.6700.2 | $x^{3} + 10 x - 10$ | $-\,2^{2}\cdot 5^{2}\cdot 67$ | $S_3$ (as 3T2) | $[6]$ |
3.3.6901.1 | $x^{3} - x^{2} - 25 x - 2$ | $67\cdot 103$ | $S_3$ (as 3T2) | trivial |
3.1.7303.1 | $x^{3} - 5 x - 17$ | $-\,67\cdot 109$ | $S_3$ (as 3T2) | trivial |
3.1.7571.1 | $x^{3} - x^{2} - 7 x - 16$ | $-\,67\cdot 113$ | $S_3$ (as 3T2) | $[2]$ |
3.1.8107.1 | $x^{3} - x^{2} + 4 x + 68$ | $-\,11^{2}\cdot 67$ | $S_3$ (as 3T2) | trivial |
3.3.8308.1 | $x^{3} - x^{2} - 13 x + 11$ | $2^{2}\cdot 31\cdot 67$ | $S_3$ (as 3T2) | trivial |
3.1.8844.1 | $x^{3} + 6 x - 54$ | $-\,2^{2}\cdot 3\cdot 11\cdot 67$ | $S_3$ (as 3T2) | trivial |
3.3.9045.1 | $x^{3} - 18 x - 23$ | $3^{3}\cdot 5\cdot 67$ | $S_3$ (as 3T2) | trivial |
3.1.9112.1 | $x^{3} - x^{2} + x - 37$ | $-\,2^{3}\cdot 17\cdot 67$ | $S_3$ (as 3T2) | trivial |
3.1.9715.1 | $x^{3} - 2 x - 19$ | $-\,5\cdot 29\cdot 67$ | $S_3$ (as 3T2) | trivial |
3.1.10452.1 | $x^{3} - 27 x - 80$ | $-\,2^{2}\cdot 3\cdot 13\cdot 67$ | $S_3$ (as 3T2) | trivial |
3.1.11055.1 | $x^{3} - x^{2} + 14 x + 1$ | $-\,3\cdot 5\cdot 11\cdot 67$ | $S_3$ (as 3T2) | $[7]$ |
3.1.11591.1 | $x^{3} - x^{2} + 14 x + 32$ | $-\,67\cdot 173$ | $S_3$ (as 3T2) | trivial |
3.1.12395.1 | $x^{3} - 7 x - 86$ | $-\,5\cdot 37\cdot 67$ | $S_3$ (as 3T2) | trivial |
3.1.12596.1 | $x^{3} - x^{2} + 4 x - 66$ | $-\,2^{2}\cdot 47\cdot 67$ | $S_3$ (as 3T2) | trivial |
3.1.12663.1 | $x^{3} + 9 x - 86$ | $-\,3^{3}\cdot 7\cdot 67$ | $S_3$ (as 3T2) | $[3]$ |
3.1.12663.2 | $x^{3} - 3 x - 65$ | $-\,3^{3}\cdot 7\cdot 67$ | $S_3$ (as 3T2) | $[3]$ |
3.1.12663.3 | $x^{3} + 15 x - 61$ | $-\,3^{3}\cdot 7\cdot 67$ | $S_3$ (as 3T2) | $[3]$ |
3.3.13333.1 | $x^{3} - 34 x - 73$ | $67\cdot 199$ | $S_3$ (as 3T2) | trivial |
3.1.13668.1 | $x^{3} - x^{2} + 17 x + 31$ | $-\,2^{2}\cdot 3\cdot 17\cdot 67$ | $S_3$ (as 3T2) | $[11]$ |
3.1.14003.1 | $x^{3} - x^{2} + 11 x - 22$ | $-\,11\cdot 19\cdot 67$ | $S_3$ (as 3T2) | $[2]$ |
3.1.14472.1 | $x^{3} + 15 x - 6$ | $-\,2^{3}\cdot 3^{3}\cdot 67$ | $S_3$ (as 3T2) | $[2]$ |
3.1.14539.1 | $x^{3} + 4 x - 23$ | $-\,7\cdot 31\cdot 67$ | $S_3$ (as 3T2) | trivial |
3.1.15276.1 | $x^{3} - x^{2} - 27 x + 69$ | $-\,2^{2}\cdot 3\cdot 19\cdot 67$ | $S_3$ (as 3T2) | trivial |
3.1.15544.1 | $x^{3} - 11 x - 50$ | $-\,2^{3}\cdot 29\cdot 67$ | $S_3$ (as 3T2) | $[6]$ |
3.1.15544.2 | $x^{3} - x^{2} - 7 x + 51$ | $-\,2^{3}\cdot 29\cdot 67$ | $S_3$ (as 3T2) | $[9]$ |
3.1.15544.3 | $x^{3} - 2 x - 48$ | $-\,2^{3}\cdot 29\cdot 67$ | $S_3$ (as 3T2) | $[3]$ |
3.1.15544.4 | $x^{3} - x^{2} + 13 x - 49$ | $-\,2^{3}\cdot 29\cdot 67$ | $S_3$ (as 3T2) | $[6]$ |
3.1.15812.1 | $x^{3} + 14 x - 44$ | $-\,2^{2}\cdot 59\cdot 67$ | $S_3$ (as 3T2) | trivial |
3.3.16013.1 | $x^{3} - x^{2} - 21 x - 22$ | $67\cdot 239$ | $S_3$ (as 3T2) | trivial |
3.1.16616.1 | $x^{3} - x^{2} - 27 x - 65$ | $-\,2^{3}\cdot 31\cdot 67$ | $S_3$ (as 3T2) | trivial |
3.1.17420.1 | $x^{3} - x^{2} - x - 25$ | $-\,2^{2}\cdot 5\cdot 13\cdot 67$ | $S_3$ (as 3T2) | trivial |
3.3.17420.1 | $x^{3} - x^{2} - 16 x + 6$ | $2^{2}\cdot 5\cdot 13\cdot 67$ | $S_3$ (as 3T2) | trivial |
3.3.17889.1 | $x^{3} - x^{2} - 30 x + 69$ | $3\cdot 67\cdot 89$ | $S_3$ (as 3T2) | trivial |