Note: Search results may be incomplete. Given $p$-adic completions contain an unramified field and completions are only searched for ramified primes.
Refine search
Label | Polynomial | Discriminant | Galois group | Class group |
---|---|---|---|---|
3.1.244.1 | $x^{3} + x - 6$ | $-\,2^{2}\cdot 61$ | $S_3$ (as 3T2) | trivial |
3.1.671.1 | $x^{3} - x - 5$ | $-\,11\cdot 61$ | $S_3$ (as 3T2) | trivial |
3.1.1464.1 | $x^{3} - x^{2} - 7 x + 19$ | $-\,2^{3}\cdot 3\cdot 61$ | $S_3$ (as 3T2) | trivial |
3.1.1647.1 | $x^{3} - 9 x - 13$ | $-\,3^{3}\cdot 61$ | $S_3$ (as 3T2) | trivial |
3.1.1708.1 | $x^{3} - x^{2} - 5 x + 11$ | $-\,2^{2}\cdot 7\cdot 61$ | $S_3$ (as 3T2) | trivial |
3.3.1708.1 | $x^{3} - x^{2} - 8 x - 2$ | $2^{2}\cdot 7\cdot 61$ | $S_3$ (as 3T2) | trivial |
3.1.2440.1 | $x^{3} + 13 x - 6$ | $-\,2^{3}\cdot 5\cdot 61$ | $S_3$ (as 3T2) | trivial |
3.1.2867.1 | $x^{3} - x^{2} + 2 x + 20$ | $-\,47\cdot 61$ | $S_3$ (as 3T2) | trivial |
3.1.3599.1 | $x^{3} - x^{2} - 6 x - 11$ | $-\,59\cdot 61$ | $S_3$ (as 3T2) | trivial |
3.1.3660.1 | $x^{3} - x^{2} - 11 x - 15$ | $-\,2^{2}\cdot 3\cdot 5\cdot 61$ | $S_3$ (as 3T2) | trivial |
3.1.4087.1 | $x^{3} - x^{2} + 2 x + 24$ | $-\,61\cdot 67$ | $S_3$ (as 3T2) | trivial |
3.1.4575.1 | $x^{3} - 15 x - 45$ | $-\,3\cdot 5^{2}\cdot 61$ | $S_3$ (as 3T2) | trivial |
3.1.4819.1 | $x^{3} + 4 x - 13$ | $-\,61\cdot 79$ | $S_3$ (as 3T2) | trivial |
3.1.5063.1 | $x^{3} + 5 x - 13$ | $-\,61\cdot 83$ | $S_3$ (as 3T2) | trivial |
3.1.5124.1 | $x^{3} - x^{2} - 7 x + 31$ | $-\,2^{2}\cdot 3\cdot 7\cdot 61$ | $S_3$ (as 3T2) | trivial |
3.1.5307.1 | $x^{3} - 12 x - 45$ | $-\,3\cdot 29\cdot 61$ | $S_3$ (as 3T2) | trivial |
3.3.5368.1 | $x^{3} - x^{2} - 19 x + 23$ | $2^{3}\cdot 11\cdot 61$ | $S_3$ (as 3T2) | trivial |
3.1.5612.1 | $x^{3} - x^{2} + 7 x - 45$ | $-\,2^{2}\cdot 23\cdot 61$ | $S_3$ (as 3T2) | trivial |
3.1.6283.1 | $x^{3} - x^{2} + 7 x - 16$ | $-\,61\cdot 103$ | $S_3$ (as 3T2) | $[2]$ |
3.3.6588.1 | $x^{3} - 15 x - 16$ | $2^{2}\cdot 3^{3}\cdot 61$ | $S_3$ (as 3T2) | trivial |
3.1.7259.1 | $x^{3} - x^{2} - x - 16$ | $-\,7\cdot 17\cdot 61$ | $S_3$ (as 3T2) | $[4]$ |
3.1.7320.1 | $x^{3} - x^{2} + 14 x - 50$ | $-\,2^{3}\cdot 3\cdot 5\cdot 61$ | $S_3$ (as 3T2) | $[7]$ |
3.1.7564.1 | $x^{3} - x^{2} + 25 x + 9$ | $-\,2^{2}\cdot 31\cdot 61$ | $S_3$ (as 3T2) | trivial |
3.3.8113.1 | $x^{3} - 13 x - 5$ | $7\cdot 19\cdot 61$ | $S_3$ (as 3T2) | trivial |
3.1.8235.1 | $x^{3} + 12 x - 7$ | $-\,3^{3}\cdot 5\cdot 61$ | $S_3$ (as 3T2) | trivial |
3.1.9028.1 | $x^{3} - x^{2} - 23 x - 49$ | $-\,2^{2}\cdot 37\cdot 61$ | $S_3$ (as 3T2) | $[2]$ |
3.1.9211.1 | $x^{3} - x^{2} + 14 x - 36$ | $-\,61\cdot 151$ | $S_3$ (as 3T2) | trivial |
3.1.9272.1 | $x^{3} + 5 x - 74$ | $-\,2^{3}\cdot 19\cdot 61$ | $S_3$ (as 3T2) | trivial |
3.1.9455.1 | $x^{3} - x^{2} - 6 x + 40$ | $-\,5\cdot 31\cdot 61$ | $S_3$ (as 3T2) | trivial |
3.1.9516.1 | $x^{3} + 12 x - 54$ | $-\,2^{2}\cdot 3\cdot 13\cdot 61$ | $S_3$ (as 3T2) | trivial |
3.3.10004.1 | $x^{3} - 14 x - 6$ | $2^{2}\cdot 41\cdot 61$ | $S_3$ (as 3T2) | trivial |
3.1.10187.1 | $x^{3} - x^{2} + 7 x + 16$ | $-\,61\cdot 167$ | $S_3$ (as 3T2) | $[4]$ |
3.1.10248.1 | $x^{3} + 15 x - 54$ | $-\,2^{3}\cdot 3\cdot 7\cdot 61$ | $S_3$ (as 3T2) | trivial |
3.3.10309.1 | $x^{3} - x^{2} - 17 x - 14$ | $13^{2}\cdot 61$ | $S_3$ (as 3T2) | $[3]$ |
3.1.10675.1 | $x^{3} - 5 x - 40$ | $-\,5^{2}\cdot 7\cdot 61$ | $S_3$ (as 3T2) | trivial |
3.1.10919.1 | $x^{3} - x^{2} - 4 x - 19$ | $-\,61\cdot 179$ | $S_3$ (as 3T2) | trivial |
3.1.11224.1 | $x^{3} - x^{2} + 5 x + 39$ | $-\,2^{3}\cdot 23\cdot 61$ | $S_3$ (as 3T2) | trivial |
3.1.11407.1 | $x^{3} - 5 x - 21$ | $-\,11\cdot 17\cdot 61$ | $S_3$ (as 3T2) | $[2]$ |
3.1.11651.1 | $x^{3} + 14 x - 5$ | $-\,61\cdot 191$ | $S_3$ (as 3T2) | $[3]$ |
3.1.11651.2 | $x^{3} - x^{2} + 5 x - 22$ | $-\,61\cdot 191$ | $S_3$ (as 3T2) | $[3]$ |
3.1.11651.3 | $x^{3} - 4 x - 21$ | $-\,61\cdot 191$ | $S_3$ (as 3T2) | $[9]$ |
3.1.11651.4 | $x^{3} - x^{2} - 15 x - 26$ | $-\,61\cdot 191$ | $S_3$ (as 3T2) | $[3]$ |
3.1.11895.1 | $x^{3} - 3 x - 63$ | $-\,3\cdot 5\cdot 13\cdot 61$ | $S_3$ (as 3T2) | trivial |
3.1.12200.1 | $x^{3} - x^{2} - 23 x - 53$ | $-\,2^{3}\cdot 5^{2}\cdot 61$ | $S_3$ (as 3T2) | trivial |
3.1.12871.1 | $x^{3} - x^{2} - 4 x + 67$ | $-\,61\cdot 211$ | $S_3$ (as 3T2) | trivial |
3.1.13359.1 | $x^{3} - x^{2} - 6 x - 21$ | $-\,3\cdot 61\cdot 73$ | $S_3$ (as 3T2) | $[2]$ |
3.1.13420.1 | $x^{3} - x^{2} - x + 45$ | $-\,2^{2}\cdot 5\cdot 11\cdot 61$ | $S_3$ (as 3T2) | trivial |
3.3.14457.1 | $x^{3} - x^{2} - 32 x - 3$ | $3\cdot 61\cdot 79$ | $S_3$ (as 3T2) | trivial |
3.1.14823.1 | $x^{3} - 9 x - 48$ | $-\,3^{5}\cdot 61$ | $S_3$ (as 3T2) | trivial |
3.1.14823.2 | $x^{3} + 9 x - 21$ | $-\,3^{5}\cdot 61$ | $S_3$ (as 3T2) | trivial |