| Label |
Polynomial |
Degree |
Signature |
Discriminant |
Ram. prime count |
Root discriminant |
Galois root discriminant |
CM field |
Galois |
Monogenic |
Galois group |
Class group |
Narrow class group |
Unit group torsion |
Unit group rank |
Regulator |
| 10.0.116580777984.1 |
$x^{10} - 4 x^{9} + 8 x^{8} - 10 x^{7} + 14 x^{6} - 26 x^{5} + 33 x^{4} - 20 x^{3} + 4 x^{2} + 1$ |
$10$ |
[0,5] |
$-\,2^{15}\cdot 3^{5}\cdot 11^{4}$ |
$3$ |
$12.7838802818$ |
$33.35951814904199$ |
|
|
? |
$D_5\times C_5$ (as 10T6) |
$[2]$ |
$[2]$ |
$2$ |
$4$ |
$11.885334615$ |
| 10.0.3110400000000.1 |
$x^{10} - 4 x^{9} + 8 x^{8} - 8 x^{7} + 17 x^{6} - 22 x^{5} + 24 x^{4} + 2 x^{3} + 28 x^{2} + 8 x + 1$ |
$10$ |
[0,5] |
$-\,2^{15}\cdot 3^{5}\cdot 5^{8}$ |
$3$ |
$17.7534035196$ |
$64.33652916021849$ |
|
|
? |
$D_5\times C_5$ (as 10T6) |
$[2]$ |
$[2]$ |
$2$ |
$4$ |
$65.4502518506$ |
| 10.0.7353650479104.1 |
$x^{10} - 2 x^{9} + x^{8} + 4 x^{7} + x^{6} - 4 x^{5} - 3 x^{4} + 10 x^{3} + 18 x^{2} + 16 x + 7$ |
$10$ |
[0,5] |
$-\,2^{15}\cdot 3^{5}\cdot 31^{4}$ |
$3$ |
$19.3486335027$ |
$76.41787836137766$ |
|
|
? |
$D_5\times C_5$ (as 10T6) |
$[2]$ |
$[2]$ |
$2$ |
$4$ |
$164.439792535$ |
| 10.2.29090713600000.1 |
$x^{10} + 8 x^{8} + 16 x^{6} - 200 x^{4} - 800 x^{2} - 4000$ |
$10$ |
[2,4] |
$2^{15}\cdot 5^{5}\cdot 13^{2}\cdot 41^{2}$ |
$4$ |
$22.2011482806$ |
$146.01369798755184$ |
|
|
? |
$S_5\times C_2$ (as 10T22) |
$[2]$ |
$[2]$ |
$2$ |
$5$ |
$316.910664672$ |
| 10.0.38855065042944.1 |
$x^{10} - 648 x^{4} + 2592 x^{2} + 7776$ |
$10$ |
[0,5] |
$-\,2^{15}\cdot 3^{5}\cdot 47^{4}$ |
$3$ |
$22.8530812679$ |
$33.58571124749333$ |
|
|
? |
$D_{10}$ (as 10T3) |
$[2]$ |
$[2]$ |
$2$ |
$4$ |
$246.29624409$ |
| 10.2.51403585126400.1 |
$x^{10} - 4 x^{9} + 4 x^{8} - 6 x^{7} + 8 x^{6} - 10 x^{5} + 19 x^{4} + 12 x^{3} - 46 x^{2} + 36 x - 23$ |
$10$ |
[2,4] |
$2^{15}\cdot 5^{2}\cdot 13^{7}$ |
$3$ |
$23.5017033981$ |
$43.29996146928164$ |
|
|
? |
$D_5^2 : C_2$ (as 10T21) |
$[2]$ |
$[2]$ |
$2$ |
$5$ |
$705.880631696$ |
| 10.0.62828933382144.1 |
$x^{10} + 2 x^{8} + 12 x^{6} + 8 x^{4} + 160 x^{2} + 96$ |
$10$ |
[0,5] |
$-\,2^{15}\cdot 3^{5}\cdot 53^{4}$ |
$3$ |
$23.9781663434$ |
$35.66510900025401$ |
|
|
|
$D_{10}$ (as 10T3) |
$[2]$ |
$[2]$ |
$2$ |
$4$ |
$1367.65031538$ |
| 10.0.77265229938688.1 |
$x^{10} + 22 x^{8} + 176 x^{6} + 616 x^{4} + 880 x^{2} + 352$ |
$10$ |
[0,5] |
$-\,2^{15}\cdot 11^{9}$ |
$2$ |
$24.4792670483$ |
$24.479267048299516$ |
✓ |
✓ |
? |
$C_{10}$ (as 10T1) |
$[22]$ |
$[22]$ |
$2$ |
$4$ |
$26.1711060094$ |
| 10.0.150725512757248.1 |
$x^{10} + 2 x^{8} - 4 x^{6} + 72 x^{4} + 416 x^{2} + 352$ |
$10$ |
[0,5] |
$-\,2^{15}\cdot 11^{5}\cdot 13^{4}$ |
$3$ |
$26.170901145$ |
$33.823069050575526$ |
|
|
? |
$D_{10}$ (as 10T3) |
$[2]$ |
$[2]$ |
$2$ |
$4$ |
$651.750372739$ |
| 10.2.178130151440384.1 |
$x^{10} + 2 x^{8} - 36 x^{6} - 24 x^{4} + 352 x^{2} - 416$ |
$10$ |
[2,4] |
$2^{15}\cdot 11^{4}\cdot 13^{5}$ |
$3$ |
$26.611768924$ |
$33.823069050575526$ |
|
|
? |
$D_{10}$ (as 10T3) |
$[2]$ |
$[2]$ |
$2$ |
$5$ |
$1507.13255086$ |
| 10.0.192198386221056.1 |
$x^{10} - 4 x^{8} - 4 x^{6} + 40 x^{4} - 80 x^{2} + 96$ |
$10$ |
[0,5] |
$-\,2^{15}\cdot 3^{5}\cdot 17^{6}$ |
$3$ |
$26.8148254127$ |
$41.01496184628245$ |
|
|
? |
$F_{5}\times C_2$ (as 10T5) |
$[2]$ |
$[2]$ |
$2$ |
$4$ |
$865.448903508$ |
| 10.0.310144849772544.1 |
$x^{10} - 2 x^{9} + 33 x^{8} - 54 x^{7} + 419 x^{6} - 456 x^{5} + 2250 x^{4} - 1094 x^{3} + 5353 x^{2} - 330 x + 7159$ |
$10$ |
[0,5] |
$-\,2^{15}\cdot 3^{5}\cdot 79^{4}$ |
$3$ |
$28.129140182$ |
$43.54308211415448$ |
|
|
? |
$D_{10}$ (as 10T3) |
$[2]$ |
$[2]$ |
$2$ |
$4$ |
$909.859032587$ |
| 10.2.494265241600000.1 |
$x^{10} - 4 x^{9} + 8 x^{8} - 8 x^{7} - 11 x^{6} + 34 x^{5} - 68 x^{4} + 78 x^{3} - 90 x^{2} + 60 x - 31$ |
$10$ |
[2,4] |
$2^{15}\cdot 5^{5}\cdot 13^{6}$ |
$3$ |
$29.4710769945$ |
$43.29996146928164$ |
|
|
? |
$D_5^2 : C_2$ (as 10T19) |
$[2]$ |
$[2]$ |
$2$ |
$5$ |
$2178.5792347$ |
| 10.2.499679334400000.1 |
$x^{10} - 2 x^{9} - 5 x^{8} + 14 x^{7} + 6 x^{6} - 24 x^{5} - 19 x^{4} + 50 x^{3} + 5 x^{2} - 50 x + 25$ |
$10$ |
[2,4] |
$2^{15}\cdot 5^{5}\cdot 47^{4}$ |
$3$ |
$29.5032010533$ |
$43.3589667773576$ |
|
|
? |
$D_5^2$ (as 10T9) |
$[2]$ |
$[2]$ |
$2$ |
$5$ |
$1146.86520947$ |
| 10.2.499679334400000.3 |
$x^{10} - 4 x^{9} - 42 x^{8} + 150 x^{7} + 768 x^{6} - 2182 x^{5} - 7763 x^{4} + 14884 x^{3} + 42538 x^{2} - 37280 x - 100319$ |
$10$ |
[2,4] |
$2^{15}\cdot 5^{5}\cdot 47^{4}$ |
$3$ |
$29.5032010533$ |
$43.3589667773576$ |
|
|
? |
$D_{10}$ (as 10T3) |
$[2]$ |
$[2]$ |
$2$ |
$5$ |
$1028.94556974$ |
| 10.2.499679334400000.4 |
$x^{10} - 4 x^{9} + 6 x^{8} + 6 x^{7} - 48 x^{6} + 58 x^{5} + x^{4} + 20 x^{3} + 84 x^{2} - 180 x + 135$ |
$10$ |
[2,4] |
$2^{15}\cdot 5^{5}\cdot 47^{4}$ |
$3$ |
$29.5032010533$ |
$43.3589667773576$ |
|
|
|
$D_5^2$ (as 10T9) |
$[2]$ |
$[2]$ |
$2$ |
$5$ |
$7058.61310724$ |
| 10.0.816293376000000.12 |
$x^{10} - 4 x^{9} + 2 x^{8} - 6 x^{7} + 38 x^{6} - 14 x^{5} + 27 x^{4} - 176 x^{3} - 112 x^{2} + 196 x + 343$ |
$10$ |
[0,5] |
$-\,2^{15}\cdot 3^{13}\cdot 5^{6}$ |
$3$ |
$30.9873635378$ |
$102.21984434695749$ |
|
|
? |
$(A_5^2 : C_2):C_2$ (as 10T41) |
$[2]$ |
$[2]$ |
$2$ |
$4$ |
$3553.5891399$ |
| 10.0.828593846452224.1 |
$x^{10} - 2 x^{9} + 11 x^{8} + 2 x^{7} - x^{6} + 172 x^{5} + 18 x^{4} + 502 x^{3} + 1525 x^{2} - 86 x + 4057$ |
$10$ |
[0,5] |
$-\,2^{15}\cdot 3^{5}\cdot 101^{4}$ |
$3$ |
$31.0337437921$ |
$196.59058720094734$ |
|
|
? |
$D_5\times C_5$ (as 10T6) |
$[2]$ |
$[2]$ |
$2$ |
$4$ |
$392.803115279$ |
| 10.0.828593846452224.2 |
$x^{10} + 2 x^{8} - 36 x^{6} - 64 x^{4} + 592 x^{2} + 864$ |
$10$ |
[0,5] |
$-\,2^{15}\cdot 3^{5}\cdot 101^{4}$ |
$3$ |
$31.0337437921$ |
$49.23413450036468$ |
|
|
|
$D_{10}$ (as 10T3) |
$[22]$ |
$[22]$ |
$2$ |
$4$ |
$751.1444098803755$ |
| 10.0.896200346271744.2 |
$x^{10} - 4 x^{9} + 40 x^{8} - 114 x^{7} + 551 x^{6} - 1064 x^{5} + 3209 x^{4} - 3960 x^{3} + 7771 x^{2} - 3886 x + 4975$ |
$10$ |
[0,5] |
$-\,2^{15}\cdot 3^{5}\cdot 103^{4}$ |
$3$ |
$31.2781105821$ |
$49.71921157862421$ |
|
|
? |
$D_{10}$ (as 10T3) |
$[2]$ |
$[2]$ |
$2$ |
$4$ |
$2016.8468426737309$ |
| 10.2.1109977823084544.1 |
$x^{10} + 4 x^{8} - 68 x^{6} - 568 x^{4} - 400 x^{2} - 1696$ |
$10$ |
[2,4] |
$2^{15}\cdot 3^{4}\cdot 53^{5}$ |
$3$ |
$31.9544561299$ |
$35.66510900025401$ |
|
|
|
$D_{10}$ (as 10T3) |
$[2]$ |
$[2]$ |
$2$ |
$5$ |
$12293.0510828$ |
| 10.0.1596776212168704.1 |
$x^{10} - 2 x^{9} + 31 x^{8} - 50 x^{7} + 392 x^{6} - 428 x^{5} + 2211 x^{4} - 1182 x^{3} + 6143 x^{2} - 1050 x + 10087$ |
$10$ |
[0,5] |
$-\,2^{15}\cdot 3^{5}\cdot 7^{4}\cdot 17^{4}$ |
$4$ |
$33.1378559253$ |
$53.44155686354955$ |
|
|
? |
$D_{10}$ (as 10T3) |
$[2]$ |
$[2]$ |
$2$ |
$4$ |
$2025.2687135910317$ |
| 10.0.1706859170463744.1 |
$x^{10} - 2 x^{9} + 23 x^{8} - 34 x^{7} + 304 x^{6} - 356 x^{5} + 2435 x^{4} - 2014 x^{3} + 11703 x^{2} - 5370 x + 26839$ |
$10$ |
[0,5] |
$-\,2^{15}\cdot 3^{5}\cdot 11^{8}$ |
$3$ |
$33.359518149$ |
$33.35951814904199$ |
✓ |
✓ |
? |
$C_{10}$ (as 10T1) |
$[5, 10]$ |
$[5, 10]$ |
$2$ |
$4$ |
$26.1711060094$ |
| 10.0.1706859170463744.2 |
$x^{10} - 12 x^{8} + 73 x^{6} - 22 x^{5} - 228 x^{4} + 198 x^{3} + 256 x^{2} - 440 x + 175$ |
$10$ |
[0,5] |
$-\,2^{15}\cdot 3^{5}\cdot 11^{8}$ |
$3$ |
$33.359518149$ |
$33.35951814904199$ |
|
|
? |
$D_5\times C_5$ (as 10T6) |
$[5, 10]$ |
$[5, 10]$ |
$2$ |
$4$ |
$214.349513849$ |
| 10.2.1826188057018368.1 |
$x^{10} - 12 x^{8} + 324 x^{6} - 1728 x^{4} + 20736 x^{2} - 365472$ |
$10$ |
[2,4] |
$2^{15}\cdot 3^{5}\cdot 47^{5}$ |
$3$ |
$33.5857112475$ |
$33.58571124749333$ |
|
|
? |
$D_{10}$ (as 10T3) |
$[2]$ |
$[2, 2]$ |
$2$ |
$5$ |
$2082.61778717$ |
| 10.0.1944000000000000.18 |
$x^{10} + 20 x^{8} + 180 x^{6} + 800 x^{4} + 1600 x^{2} + 864$ |
$10$ |
[0,5] |
$-\,2^{15}\cdot 3^{5}\cdot 5^{12}$ |
$3$ |
$33.7963365356$ |
$39.697817101728155$ |
|
|
|
$D_{10}$ (as 10T3) |
$[2]$ |
$[2]$ |
$2$ |
$4$ |
$14140.9944014$ |
| 10.0.1944000000000000.22 |
$x^{10} - 10 x^{8} - 10 x^{7} - 5 x^{6} + 8 x^{5} + 175 x^{4} + 360 x^{3} + 585 x^{2} + 1170 x + 927$ |
$10$ |
[0,5] |
$-\,2^{15}\cdot 3^{5}\cdot 5^{12}$ |
$3$ |
$33.79633653562953$ |
$67.51911293845532$ |
|
|
? |
$D_5^2 : C_2$ (as 10T19) |
$[2]$ |
$[2]$ |
$2$ |
$4$ |
$3679.0584579758633$ |
| 10.0.2071433961897984.1 |
$x^{10} - 2 x^{9} + 27 x^{8} - 42 x^{7} + 344 x^{6} - 384 x^{5} + 2247 x^{4} - 1502 x^{3} + 8443 x^{2} - 2922 x + 17455$ |
$10$ |
[0,5] |
$-\,2^{15}\cdot 3^{5}\cdot 127^{4}$ |
$3$ |
$34.0116036344$ |
$55.20869496736904$ |
|
|
? |
$D_{10}$ (as 10T3) |
$[2]$ |
$[2]$ |
$2$ |
$4$ |
$3800.3872464321717$ |
| 10.2.3240000000000000.4 |
$x^{10} + 10 x^{8} - 20 x^{6} - 280 x^{4} + 800 x^{2} - 160$ |
$10$ |
[2,4] |
$2^{15}\cdot 3^{4}\cdot 5^{13}$ |
$3$ |
$35.5675950695$ |
$39.697817101728155$ |
|
|
|
$D_{10}$ (as 10T3) |
$[2]$ |
$[2]$ |
$2$ |
$5$ |
$25714.6411992$ |
| 10.0.3267372565757952.2 |
$x^{10} + 20 x^{8} + 116 x^{6} + 160 x^{4} + 64 x^{2} + 1632$ |
$10$ |
[0,5] |
$-\,2^{15}\cdot 3^{5}\cdot 17^{7}$ |
$3$ |
$35.597530092$ |
$41.01496184628245$ |
|
|
? |
$F_{5}\times C_2$ (as 10T5) |
$[2, 2]$ |
$[2, 2]$ |
$2$ |
$4$ |
$865.448903508$ |
| 10.0.3329663600001024.1 |
$x^{10} - 2 x^{9} + 29 x^{8} - 46 x^{7} + 367 x^{6} - 404 x^{5} + 2210 x^{4} - 1318 x^{3} + 7173 x^{2} - 1914 x + 13519$ |
$10$ |
[0,5] |
$-\,2^{15}\cdot 3^{5}\cdot 11^{4}\cdot 13^{4}$ |
$4$ |
$35.6648199474$ |
$58.58327406350724$ |
|
|
? |
$D_{10}$ (as 10T3) |
$[2]$ |
$[2]$ |
$2$ |
$4$ |
$3212.2087588715217$ |
| 10.0.3732547578462208.1 |
$x^{10} + 4 x^{8} - 44 x^{6} + 256 x^{4} - 128 x^{2} + 352$ |
$10$ |
[0,5] |
$-\,2^{15}\cdot 11^{5}\cdot 29^{4}$ |
$3$ |
$36.0745178455$ |
$50.51732376126036$ |
|
|
|
$D_{10}$ (as 10T3) |
$[2]$ |
$[2]$ |
$2$ |
$4$ |
$4164.658812617164$ |
| 10.2.3988488294400000.1 |
$x^{10} - 2 x^{9} - 47 x^{8} + 74 x^{7} + 931 x^{6} - 1192 x^{5} - 9158 x^{4} + 9146 x^{3} + 46953 x^{2} - 29546 x - 113049$ |
$10$ |
[2,4] |
$2^{15}\cdot 5^{5}\cdot 79^{4}$ |
$3$ |
$36.3145638226$ |
$56.213877290220786$ |
|
|
|
$D_{10}$ (as 10T3) |
$[2]$ |
$[2]$ |
$2$ |
$5$ |
$7099.789923519084$ |
| 10.2.4859732070400000.1 |
$x^{10} - 20 x^{8} + 228 x^{6} - 1440 x^{4} + 4736 x^{2} - 7840$ |
$10$ |
[2,4] |
$2^{15}\cdot 5^{5}\cdot 83^{4}$ |
$3$ |
$37.0391688465$ |
$57.619441163551734$ |
|
|
|
$D_{10}$ (as 10T3) |
$[2]$ |
$[2]$ |
$2$ |
$5$ |
$19285.7126819745$ |
| 10.0.4873715075350528.1 |
$x^{10} - 4 x^{9} + 32 x^{8} - 62 x^{7} + 184 x^{6} - 46 x^{5} + 243 x^{4} + 152 x^{3} + 196 x^{2} + 120 x + 25$ |
$10$ |
[0,5] |
$-\,2^{15}\cdot 11^{5}\cdot 31^{4}$ |
$3$ |
$37.0498124271$ |
$146.32909652081895$ |
|
|
? |
$D_5\times C_5$ (as 10T6) |
$[2]$ |
$[2]$ |
$2$ |
$4$ |
$2028.73170818$ |
| 10.0.6298560000000000.8 |
$x^{10} - 2 x^{9} - 3 x^{8} + 18 x^{7} - 120 x^{5} + 351 x^{4} - 606 x^{3} + 531 x^{2} - 170 x + 31$ |
$10$ |
[0,5] |
$-\,2^{15}\cdot 3^{9}\cdot 5^{10}$ |
$3$ |
$38.0122981569$ |
$162.0648504867905$ |
|
|
? |
$A_5 \wr C_2$ (as 10T40) |
$[10]$ |
$[10]$ |
$2$ |
$4$ |
$1104.125437$ |
| 10.2.7022076006400000.1 |
$x^{10} - 20 x^{8} + 172 x^{6} - 760 x^{4} + 1456 x^{2} - 160$ |
$10$ |
[2,4] |
$2^{15}\cdot 5^{5}\cdot 7^{4}\cdot 13^{4}$ |
$4$ |
$38.427891215$ |
$60.332412515993425$ |
|
|
? |
$D_{10}$ (as 10T3) |
$[2]$ |
$[2]$ |
$2$ |
$5$ |
$4629.312479817864$ |
| 10.6.9000000000000000.1 |
$x^{10} - 20 x^{8} - 10 x^{7} + 140 x^{6} + 106 x^{5} - 375 x^{4} - 260 x^{3} + 120 x^{2} + 20 x - 1$ |
$10$ |
[6,2] |
$2^{15}\cdot 3^{2}\cdot 5^{15}$ |
$3$ |
$39.3934712093$ |
$67.51911293845532$ |
|
|
|
$D_5^2 : C_2$ (as 10T21) |
$[2]$ |
$[2]$ |
$2$ |
$7$ |
$53200.3986674$ |
| 10.10.9840352706854912.1 |
$x^{10} - 22 x^{8} - 10 x^{7} + 155 x^{6} + 120 x^{5} - 407 x^{4} - 396 x^{3} + 297 x^{2} + 286 x - 33$ |
$10$ |
[10,0] |
$2^{15}\cdot 11^{4}\cdot 29^{5}$ |
$3$ |
$39.7466990527$ |
$103.7189569348368$ |
|
|
|
$D_5\times C_5$ (as 10T6) |
$[2]$ |
$[2]$ |
$2$ |
$9$ |
$120083.548612$ |
| 10.2.9840352706854912.1 |
$x^{10} - 10 x^{8} - 16 x^{6} - 56 x^{4} - 80 x^{2} - 928$ |
$10$ |
[2,4] |
$2^{15}\cdot 11^{4}\cdot 29^{5}$ |
$3$ |
$39.7466990527$ |
$50.51732376126036$ |
|
|
|
$D_{10}$ (as 10T3) |
$[2]$ |
$[2]$ |
$2$ |
$5$ |
$22023.934119246896$ |
| 10.2.11177433485180928.1 |
$x^{10} - 6 x^{8} + 108 x^{6} + 648 x^{4} + 2592 x^{2} - 54432$ |
$10$ |
[2,4] |
$2^{15}\cdot 3^{5}\cdot 7^{5}\cdot 17^{4}$ |
$4$ |
$40.2563327674$ |
$53.44155686354955$ |
|
|
? |
$D_{10}$ (as 10T3) |
$[2]$ |
$[2, 2]$ |
$2$ |
$5$ |
$6993.478103843374$ |
| 10.2.11525210214400000.1 |
$x^{10} - 4 x^{9} - 40 x^{8} + 142 x^{7} + 743 x^{6} - 2120 x^{5} - 7879 x^{4} + 15880 x^{3} + 46075 x^{2} - 45358 x - 119169$ |
$10$ |
[2,4] |
$2^{15}\cdot 5^{5}\cdot 103^{4}$ |
$3$ |
$40.3798671284$ |
$64.18722614352485$ |
|
|
|
$D_{10}$ (as 10T3) |
$[2]$ |
$[2]$ |
$2$ |
$5$ |
$14422.042178827694$ |
| 10.0.14062795223040000.1 |
$x^{10} + 16 x^{8} + 144 x^{6} + 664 x^{4} + 2080 x^{2} + 2400$ |
$10$ |
[0,5] |
$-\,2^{15}\cdot 3^{5}\cdot 5^{4}\cdot 41^{4}$ |
$4$ |
$41.1914580851$ |
$70.14271166700073$ |
|
|
|
$D_{10}$ (as 10T3) |
$[2]$ |
$[2]$ |
$2$ |
$4$ |
$13793.125718940932$ |
| 10.2.18257397616640000.1 |
$x^{10} - 2 x^{8} + 32 x^{6} + 8 x^{4} + 432 x^{2} - 416$ |
$10$ |
[2,4] |
$2^{15}\cdot 5^{4}\cdot 7^{4}\cdot 13^{5}$ |
$4$ |
$42.2808673055$ |
$60.332412515993425$ |
|
|
|
$D_{10}$ (as 10T3) |
$[2]$ |
$[2]$ |
$2$ |
$5$ |
$16604.657983569497$ |
| 10.0.20407334400000000.2 |
$x^{10} - 16 x^{8} - 26 x^{7} + 70 x^{6} + 230 x^{5} + 175 x^{4} - 80 x^{3} - 130 x^{2} + 25$ |
$10$ |
[0,5] |
$-\,2^{15}\cdot 3^{13}\cdot 5^{8}$ |
$3$ |
$42.7541846036$ |
$256.8448135893117$ |
|
|
? |
$(A_5^2 : C_2):C_2$ (as 10T41) |
$[2]$ |
$[2]$ |
$2$ |
$4$ |
$11523.4377645$ |
| 10.2.20534673510400000.1 |
$x^{10} - 2 x^{9} - 49 x^{8} + 78 x^{7} + 968 x^{6} - 1228 x^{5} - 9117 x^{4} + 8674 x^{3} + 42911 x^{2} - 25146 x - 93769$ |
$10$ |
[2,4] |
$2^{15}\cdot 5^{5}\cdot 7^{4}\cdot 17^{4}$ |
$4$ |
$42.7807880426$ |
$68.99275324264136$ |
|
|
? |
$D_{10}$ (as 10T3) |
$[2]$ |
$[2]$ |
$2$ |
$5$ |
$4193.402514123761$ |
| 10.10.21950349414400000.1 |
$x^{10} - 2 x^{9} - 57 x^{8} + 94 x^{7} + 1136 x^{6} - 1412 x^{5} - 9533 x^{4} + 7586 x^{3} + 32343 x^{2} - 11546 x - 34649$ |
$10$ |
[10,0] |
$2^{15}\cdot 5^{5}\cdot 11^{8}$ |
$3$ |
$43.0669527429$ |
$43.06695274291456$ |
|
✓ |
? |
$C_{10}$ (as 10T1) |
$[2]$ |
$[2]$ |
$2$ |
$9$ |
$28227.4796665$ |
| 10.2.23437992038400000.1 |
$x^{10} - 10 x^{8} + 48 x^{6} + 200 x^{4} - 464 x^{2} - 1440$ |
$10$ |
[2,4] |
$2^{15}\cdot 3^{4}\cdot 5^{5}\cdot 41^{4}$ |
$4$ |
$43.3502933062$ |
$70.14271166700073$ |
|
|
|
$D_{10}$ (as 10T3) |
$[2]$ |
$[2]$ |
$2$ |
$5$ |
$132972.22669101774$ |
| 10.0.23484928716800000.2 |
$x^{10} + 20 x^{8} + 900 x^{6} + 8000 x^{4} + 160000 x^{2} + 4700000$ |
$10$ |
[0,5] |
$-\,2^{15}\cdot 5^{5}\cdot 47^{5}$ |
$3$ |
$43.3589667774$ |
$43.3589667773576$ |
|
|
? |
$D_{10}$ (as 10T3) |
$[2, 10]$ |
$[2, 10]$ |
$2$ |
$4$ |
$565.837704223$ |
| 10.2.24501443132030976.1 |
$x^{10} + 12 x^{8} + 180 x^{6} + 864 x^{4} + 5184 x^{2} - 614304$ |
$10$ |
[2,4] |
$2^{15}\cdot 3^{5}\cdot 79^{5}$ |
$3$ |
$43.5430821142$ |
$43.54308211415448$ |
|
|
? |
$D_{10}$ (as 10T3) |
$[2]$ |
$[2, 2]$ |
$2$ |
$5$ |
$11706.6404368$ |