Note: Search results may be incomplete. Given $p$-adic completions contain an unramified field and completions are only searched for ramified primes.
Refine search
Label | Polynomial | Discriminant | Galois group | Class group |
---|---|---|---|---|
3.1.524.1 | $x^{3} - x^{2} + 3 x - 5$ | $-\,2^{2}\cdot 131$ | $S_3$ (as 3T2) | trivial |
3.1.655.1 | $x^{3} - x^{2} + 5$ | $-\,5\cdot 131$ | $S_3$ (as 3T2) | trivial |
3.1.1048.1 | $x^{3} - x^{2} + 8 x - 12$ | $-\,2^{3}\cdot 131$ | $S_3$ (as 3T2) | trivial |
3.1.1572.1 | $x^{3} - x^{2} + x + 15$ | $-\,2^{2}\cdot 3\cdot 131$ | $S_3$ (as 3T2) | $[5]$ |
3.1.2227.1 | $x^{3} - x^{2} + 3 x + 8$ | $-\,17\cdot 131$ | $S_3$ (as 3T2) | trivial |
3.3.3144.1 | $x^{3} - x^{2} - 16 x - 8$ | $2^{3}\cdot 3\cdot 131$ | $S_3$ (as 3T2) | trivial |
3.1.5240.1 | $x^{3} - x^{2} + 9 x - 29$ | $-\,2^{3}\cdot 5\cdot 131$ | $S_3$ (as 3T2) | trivial |
3.1.5371.1 | $x^{3} - x^{2} - 15 x - 22$ | $-\,41\cdot 131$ | $S_3$ (as 3T2) | $[2]$ |
3.1.6419.1 | $x^{3} - x^{2} - 9 x + 22$ | $-\,7^{2}\cdot 131$ | $S_3$ (as 3T2) | $[3]$ |
3.3.6681.1 | $x^{3} - x^{2} - 14 x - 9$ | $3\cdot 17\cdot 131$ | $S_3$ (as 3T2) | trivial |
3.1.6943.1 | $x^{3} - x^{2} - 4 x - 15$ | $-\,53\cdot 131$ | $S_3$ (as 3T2) | trivial |
3.1.7336.1 | $x^{3} - x^{2} + 16 x - 28$ | $-\,2^{3}\cdot 7\cdot 131$ | $S_3$ (as 3T2) | trivial |
3.3.9301.1 | $x^{3} - x^{2} - 21 x - 26$ | $71\cdot 131$ | $S_3$ (as 3T2) | $[2]$ |
3.1.9563.1 | $x^{3} - 16 x - 31$ | $-\,73\cdot 131$ | $S_3$ (as 3T2) | trivial |
3.1.10611.1 | $x^{3} + 6 x - 19$ | $-\,3^{4}\cdot 131$ | $S_3$ (as 3T2) | $[6]$ |
3.1.12183.1 | $x^{3} - x^{2} - 2 x - 63$ | $-\,3\cdot 31\cdot 131$ | $S_3$ (as 3T2) | trivial |
3.1.13231.1 | $x^{3} - x^{2} - 4 x - 21$ | $-\,101\cdot 131$ | $S_3$ (as 3T2) | $[2]$ |
3.1.14279.1 | $x^{3} - x - 23$ | $-\,109\cdot 131$ | $S_3$ (as 3T2) | $[2]$ |
3.1.17292.1 | $x^{3} - x^{2} - 11 x + 33$ | $-\,2^{2}\cdot 3\cdot 11\cdot 131$ | $S_3$ (as 3T2) | trivial |
3.3.17685.1 | $x^{3} - 33 x - 52$ | $3^{3}\cdot 5\cdot 131$ | $S_3$ (as 3T2) | trivial |
3.1.18340.1 | $x^{3} + 37 x - 58$ | $-\,2^{2}\cdot 5\cdot 7\cdot 131$ | $S_3$ (as 3T2) | trivial |
3.1.19912.1 | $x^{3} - x^{2} - 19 x - 57$ | $-\,2^{3}\cdot 19\cdot 131$ | $S_3$ (as 3T2) | trivial |
3.3.20436.1 | $x^{3} - 36 x - 10$ | $2^{2}\cdot 3\cdot 13\cdot 131$ | $S_3$ (as 3T2) | trivial |
3.3.20829.1 | $x^{3} - x^{2} - 17 x + 6$ | $3\cdot 53\cdot 131$ | $S_3$ (as 3T2) | trivial |
3.3.21877.1 | $x^{3} - x^{2} - 37 x - 8$ | $131\cdot 167$ | $S_3$ (as 3T2) | trivial |
3.1.22008.1 | $x^{3} - x^{2} + 6 x - 30$ | $-\,2^{3}\cdot 3\cdot 7\cdot 131$ | $S_3$ (as 3T2) | trivial |
3.1.22139.1 | $x^{3} - x^{2} - 4 x + 116$ | $-\,13^{2}\cdot 131$ | $S_3$ (as 3T2) | $[3]$ |
3.3.24104.1 | $x^{3} - x^{2} - 31 x - 21$ | $2^{3}\cdot 23\cdot 131$ | $S_3$ (as 3T2) | trivial |
3.1.24628.1 | $x^{3} - x^{2} + 29 x + 3$ | $-\,2^{2}\cdot 47\cdot 131$ | $S_3$ (as 3T2) | trivial |
3.1.24759.1 | $x^{3} - 33 x - 79$ | $-\,3^{3}\cdot 7\cdot 131$ | $S_3$ (as 3T2) | trivial |
3.1.25283.1 | $x^{3} + 2 x - 153$ | $-\,131\cdot 193$ | $S_3$ (as 3T2) | trivial |
3.1.25676.1 | $x^{3} - x^{2} + 5 x + 29$ | $-\,2^{2}\cdot 7^{2}\cdot 131$ | $S_3$ (as 3T2) | $[3]$ |
3.1.25676.2 | $x^{3} - 28 x - 84$ | $-\,2^{2}\cdot 7^{2}\cdot 131$ | $S_3$ (as 3T2) | $[6]$ |
3.1.25807.1 | $x^{3} - x^{2} + 10 x - 64$ | $-\,131\cdot 197$ | $S_3$ (as 3T2) | trivial |
3.1.26855.1 | $x^{3} - x^{2} - 30 x - 80$ | $-\,5\cdot 41\cdot 131$ | $S_3$ (as 3T2) | trivial |
3.1.27903.1 | $x^{3} - 15 x - 99$ | $-\,3\cdot 71\cdot 131$ | $S_3$ (as 3T2) | $[2]$ |
3.3.28165.1 | $x^{3} - 28 x - 47$ | $5\cdot 43\cdot 131$ | $S_3$ (as 3T2) | $[5]$ |
3.1.28296.1 | $x^{3} - 9 x - 34$ | $-\,2^{3}\cdot 3^{3}\cdot 131$ | $S_3$ (as 3T2) | $[2]$ |
3.1.28427.1 | $x^{3} - x^{2} + 9 x + 28$ | $-\,7\cdot 31\cdot 131$ | $S_3$ (as 3T2) | trivial |
3.1.28951.1 | $x^{3} - x^{2} - 14 x - 64$ | $-\,13\cdot 17\cdot 131$ | $S_3$ (as 3T2) | trivial |
3.1.29868.1 | $x^{3} - x^{2} + x + 33$ | $-\,2^{2}\cdot 3\cdot 19\cdot 131$ | $S_3$ (as 3T2) | $[2]$ |
3.1.29999.1 | $x^{3} - x^{2} + 6 x + 31$ | $-\,131\cdot 229$ | $S_3$ (as 3T2) | trivial |
3.1.30392.1 | $x^{3} + 14 x - 64$ | $-\,2^{3}\cdot 29\cdot 131$ | $S_3$ (as 3T2) | trivial |
3.3.30392.1 | $x^{3} - x^{2} - 31 x + 3$ | $2^{3}\cdot 29\cdot 131$ | $S_3$ (as 3T2) | trivial |
3.1.30523.1 | $x^{3} - x^{2} - 2 x + 68$ | $-\,131\cdot 233$ | $S_3$ (as 3T2) | trivial |
3.3.30785.1 | $x^{3} - x^{2} - 20 x + 17$ | $5\cdot 47\cdot 131$ | $S_3$ (as 3T2) | trivial |
3.1.31571.1 | $x^{3} - x^{2} - 20 x + 148$ | $-\,131\cdot 241$ | $S_3$ (as 3T2) | trivial |
3.3.31833.1 | $x^{3} - 45 x - 111$ | $3^{5}\cdot 131$ | $S_3$ (as 3T2) | trivial |
3.3.33929.1 | $x^{3} - 41 x - 72$ | $7\cdot 37\cdot 131$ | $S_3$ (as 3T2) | trivial |
3.1.34060.1 | $x^{3} - x^{2} + 19 x + 11$ | $-\,2^{2}\cdot 5\cdot 13\cdot 131$ | $S_3$ (as 3T2) | trivial |