Defining parameters
| Level: | \( N \) | \(=\) | \( 9984 = 2^{8} \cdot 3 \cdot 13 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 9984.u (of order \(4\) and degree \(2\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 624 \) |
| Character field: | \(\Q(i)\) | ||
| Sturm bound: | \(3584\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(9984, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 3680 | 896 | 2784 |
| Cusp forms | 3488 | 896 | 2592 |
| Eisenstein series | 192 | 0 | 192 |
Decomposition of \(S_{2}^{\mathrm{new}}(9984, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(9984, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(9984, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(624, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(2496, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(4992, [\chi])\)\(^{\oplus 2}\)