Defining parameters
| Level: | \( N \) | \(=\) | \( 9984 = 2^{8} \cdot 3 \cdot 13 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 9984.n (of order \(2\) and degree \(1\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 156 \) |
| Character field: | \(\Q\) | ||
| Sturm bound: | \(3584\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(9984, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 1840 | 456 | 1384 |
| Cusp forms | 1744 | 440 | 1304 |
| Eisenstein series | 96 | 16 | 80 |
Decomposition of \(S_{2}^{\mathrm{new}}(9984, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(9984, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(9984, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(156, [\chi])\)\(^{\oplus 7}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(624, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1248, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(2496, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(4992, [\chi])\)\(^{\oplus 2}\)