Defining parameters
| Level: | \( N \) | \(=\) | \( 9984 = 2^{8} \cdot 3 \cdot 13 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 9984.dc (of order \(12\) and degree \(4\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 312 \) |
| Character field: | \(\Q(\zeta_{12})\) | ||
| Sturm bound: | \(3584\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(9984, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 7360 | 1824 | 5536 |
| Cusp forms | 6976 | 1760 | 5216 |
| Eisenstein series | 384 | 64 | 320 |
Decomposition of \(S_{2}^{\mathrm{new}}(9984, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(9984, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(9984, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(312, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1248, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(2496, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(4992, [\chi])\)\(^{\oplus 2}\)