Properties

Label 97.7.j
Level $97$
Weight $7$
Character orbit 97.j
Rep. character $\chi_{97}(19,\cdot)$
Character field $\Q(\zeta_{32})$
Dimension $768$
Newform subspaces $1$
Sturm bound $57$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 97 \)
Weight: \( k \) \(=\) \( 7 \)
Character orbit: \([\chi]\) \(=\) 97.j (of order \(32\) and degree \(16\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 97 \)
Character field: \(\Q(\zeta_{32})\)
Newform subspaces: \( 1 \)
Sturm bound: \(57\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{7}(97, [\chi])\).

Total New Old
Modular forms 800 800 0
Cusp forms 768 768 0
Eisenstein series 32 32 0

Trace form

\( 768 q - 16 q^{2} - 16 q^{3} - 16 q^{4} - 16 q^{5} - 16 q^{6} - 16 q^{7} - 16 q^{8} - 11056 q^{9} - 16 q^{10} - 16 q^{11} - 15376 q^{12} - 16 q^{13} - 16 q^{14} + 7408 q^{15} - 16 q^{16} + 16624 q^{17} - 16 q^{18}+ \cdots - 6220816 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{7}^{\mathrm{new}}(97, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
97.7.j.a 97.j 97.j $768$ $22.315$ None 97.7.j.a \(-16\) \(-16\) \(-16\) \(-16\) $\mathrm{SU}(2)[C_{32}]$