Defining parameters
Level: | \( N \) | \(=\) | \( 97 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 97.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(32\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(97))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 26 | 24 | 2 |
Cusp forms | 24 | 24 | 0 |
Eisenstein series | 2 | 0 | 2 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(97\) | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | ||||
\(+\) | \(14\) | \(13\) | \(1\) | \(13\) | \(13\) | \(0\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(12\) | \(11\) | \(1\) | \(11\) | \(11\) | \(0\) | \(1\) | \(0\) | \(1\) |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(97))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 97 | |||||||
97.4.a.a | $11$ | $5.723$ | \(\mathbb{Q}[x]/(x^{11} - \cdots)\) | None | \(-11\) | \(-12\) | \(-34\) | \(-68\) | $-$ | \(q+(-1+\beta _{1})q^{2}+(-1-\beta _{7})q^{3}+(3+\cdots)q^{4}+\cdots\) | |
97.4.a.b | $13$ | $5.723$ | \(\mathbb{Q}[x]/(x^{13} - \cdots)\) | None | \(9\) | \(12\) | \(16\) | \(58\) | $+$ | \(q+(1-\beta _{1})q^{2}+(1-\beta _{6})q^{3}+(5-\beta _{1}+\cdots)q^{4}+\cdots\) |