Properties

Label 97.4.a
Level $97$
Weight $4$
Character orbit 97.a
Rep. character $\chi_{97}(1,\cdot)$
Character field $\Q$
Dimension $24$
Newform subspaces $2$
Sturm bound $32$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 97 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 97.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(32\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(97))\).

Total New Old
Modular forms 26 24 2
Cusp forms 24 24 0
Eisenstein series 2 0 2

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(97\)TotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(14\)\(13\)\(1\)\(13\)\(13\)\(0\)\(1\)\(0\)\(1\)
\(-\)\(12\)\(11\)\(1\)\(11\)\(11\)\(0\)\(1\)\(0\)\(1\)

Trace form

\( 24 q - 2 q^{2} + 94 q^{4} - 18 q^{5} - 26 q^{6} - 10 q^{7} + 24 q^{8} + 244 q^{9} - 32 q^{10} + 20 q^{11} + 54 q^{12} - 74 q^{13} - 34 q^{14} - 256 q^{15} + 366 q^{16} - 88 q^{17} - 270 q^{18} - 28 q^{19}+ \cdots - 2032 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(97))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 97
97.4.a.a 97.a 1.a $11$ $5.723$ \(\mathbb{Q}[x]/(x^{11} - \cdots)\) None 97.4.a.a \(-11\) \(-12\) \(-34\) \(-68\) $-$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{1})q^{2}+(-1-\beta _{7})q^{3}+(3+\cdots)q^{4}+\cdots\)
97.4.a.b 97.a 1.a $13$ $5.723$ \(\mathbb{Q}[x]/(x^{13} - \cdots)\) None 97.4.a.b \(9\) \(12\) \(16\) \(58\) $+$ $\mathrm{SU}(2)$ \(q+(1-\beta _{1})q^{2}+(1-\beta _{6})q^{3}+(5-\beta _{1}+\cdots)q^{4}+\cdots\)