Properties

Label 93.3.j
Level $93$
Weight $3$
Character orbit 93.j
Rep. character $\chi_{93}(46,\cdot)$
Character field $\Q(\zeta_{10})$
Dimension $40$
Newform subspaces $1$
Sturm bound $32$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 93 = 3 \cdot 31 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 93.j (of order \(10\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 31 \)
Character field: \(\Q(\zeta_{10})\)
Newform subspaces: \( 1 \)
Sturm bound: \(32\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(93, [\chi])\).

Total New Old
Modular forms 96 40 56
Cusp forms 80 40 40
Eisenstein series 16 0 16

Trace form

\( 40 q - 20 q^{4} - 4 q^{7} - 6 q^{8} + 30 q^{9} - 18 q^{10} + 10 q^{11} - 30 q^{13} + 10 q^{14} + 84 q^{16} - 80 q^{17} - 36 q^{19} + 68 q^{20} + 120 q^{21} - 230 q^{22} - 70 q^{23} - 120 q^{24} + 136 q^{25}+ \cdots + 660 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(93, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
93.3.j.a 93.j 31.f $40$ $2.534$ None 93.3.j.a \(0\) \(0\) \(0\) \(-4\) $\mathrm{SU}(2)[C_{10}]$

Decomposition of \(S_{3}^{\mathrm{old}}(93, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(93, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(31, [\chi])\)\(^{\oplus 2}\)