Properties

Label 912.3
Level 912
Weight 3
Dimension 19180
Nonzero newspaces 24
Sturm bound 138240
Trace bound 13

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 912 = 2^{4} \cdot 3 \cdot 19 \)
Weight: \( k \) = \( 3 \)
Nonzero newspaces: \( 24 \)
Sturm bound: \(138240\)
Trace bound: \(13\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(\Gamma_1(912))\).

Total New Old
Modular forms 47088 19484 27604
Cusp forms 45072 19180 25892
Eisenstein series 2016 304 1712

Trace form

\( 19180 q - 25 q^{3} - 88 q^{4} - 24 q^{5} - 44 q^{6} - 74 q^{7} + 24 q^{8} + 13 q^{9} + 88 q^{10} - 64 q^{11} + 76 q^{12} - 22 q^{13} + 88 q^{14} + 45 q^{15} - 104 q^{16} + 24 q^{17} + 60 q^{18} + 44 q^{19}+ \cdots + 493 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(\Gamma_1(912))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
912.3.b \(\chi_{912}(911, \cdot)\) 912.3.b.a 2 1
912.3.b.b 2
912.3.b.c 2
912.3.b.d 2
912.3.b.e 4
912.3.b.f 4
912.3.b.g 16
912.3.b.h 48
912.3.c \(\chi_{912}(343, \cdot)\) None 0 1
912.3.h \(\chi_{912}(305, \cdot)\) 912.3.h.a 12 1
912.3.h.b 12
912.3.h.c 12
912.3.h.d 36
912.3.i \(\chi_{912}(265, \cdot)\) None 0 1
912.3.l \(\chi_{912}(455, \cdot)\) None 0 1
912.3.m \(\chi_{912}(799, \cdot)\) 912.3.m.a 12 1
912.3.m.b 12
912.3.m.c 12
912.3.n \(\chi_{912}(761, \cdot)\) None 0 1
912.3.o \(\chi_{912}(721, \cdot)\) 912.3.o.a 2 1
912.3.o.b 4
912.3.o.c 6
912.3.o.d 8
912.3.o.e 20
912.3.s \(\chi_{912}(77, \cdot)\) n/a 576 2
912.3.t \(\chi_{912}(37, \cdot)\) n/a 320 2
912.3.w \(\chi_{912}(227, \cdot)\) n/a 632 2
912.3.x \(\chi_{912}(115, \cdot)\) n/a 288 2
912.3.z \(\chi_{912}(463, \cdot)\) 912.3.z.a 12 2
912.3.z.b 12
912.3.z.c 12
912.3.z.d 12
912.3.z.e 16
912.3.z.f 16
912.3.ba \(\chi_{912}(407, \cdot)\) None 0 2
912.3.be \(\chi_{912}(145, \cdot)\) 912.3.be.a 2 2
912.3.be.b 2
912.3.be.c 2
912.3.be.d 6
912.3.be.e 6
912.3.be.f 6
912.3.be.g 8
912.3.be.h 8
912.3.be.i 20
912.3.be.j 20
912.3.bf \(\chi_{912}(425, \cdot)\) None 0 2
912.3.bi \(\chi_{912}(7, \cdot)\) None 0 2
912.3.bj \(\chi_{912}(335, \cdot)\) n/a 160 2
912.3.bk \(\chi_{912}(217, \cdot)\) None 0 2
912.3.bl \(\chi_{912}(353, \cdot)\) n/a 156 2
912.3.bp \(\chi_{912}(373, \cdot)\) n/a 640 4
912.3.bs \(\chi_{912}(125, \cdot)\) n/a 1264 4
912.3.bt \(\chi_{912}(163, \cdot)\) n/a 640 4
912.3.bw \(\chi_{912}(107, \cdot)\) n/a 1264 4
912.3.bx \(\chi_{912}(137, \cdot)\) None 0 6
912.3.by \(\chi_{912}(97, \cdot)\) n/a 240 6
912.3.cb \(\chi_{912}(17, \cdot)\) n/a 468 6
912.3.cd \(\chi_{912}(409, \cdot)\) None 0 6
912.3.ce \(\chi_{912}(143, \cdot)\) n/a 480 6
912.3.cg \(\chi_{912}(55, \cdot)\) None 0 6
912.3.cj \(\chi_{912}(71, \cdot)\) None 0 6
912.3.cl \(\chi_{912}(175, \cdot)\) n/a 240 6
912.3.cm \(\chi_{912}(59, \cdot)\) n/a 3792 12
912.3.co \(\chi_{912}(43, \cdot)\) n/a 1920 12
912.3.cr \(\chi_{912}(5, \cdot)\) n/a 3792 12
912.3.ct \(\chi_{912}(13, \cdot)\) n/a 1920 12

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{3}^{\mathrm{old}}(\Gamma_1(912))\) into lower level spaces

\( S_{3}^{\mathrm{old}}(\Gamma_1(912)) \cong \) \(S_{3}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 20}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 16}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 10}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 12}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(19))\)\(^{\oplus 10}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(24))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(38))\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(48))\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(57))\)\(^{\oplus 5}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(76))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(114))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(152))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(228))\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(304))\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(456))\)\(^{\oplus 2}\)