Properties

Label 910.2.a
Level $910$
Weight $2$
Character orbit 910.a
Rep. character $\chi_{910}(1,\cdot)$
Character field $\Q$
Dimension $25$
Newform subspaces $17$
Sturm bound $336$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 910 = 2 \cdot 5 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 910.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 17 \)
Sturm bound: \(336\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(3\), \(11\), \(17\), \(23\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(910))\).

Total New Old
Modular forms 176 25 151
Cusp forms 161 25 136
Eisenstein series 15 0 15

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(5\)\(7\)\(13\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(+\)\(+\)\(5\)\(2\)\(3\)\(5\)\(2\)\(3\)\(0\)\(0\)\(0\)
\(+\)\(+\)\(+\)\(-\)\(-\)\(14\)\(2\)\(12\)\(13\)\(2\)\(11\)\(1\)\(0\)\(1\)
\(+\)\(+\)\(-\)\(+\)\(-\)\(15\)\(1\)\(14\)\(14\)\(1\)\(13\)\(1\)\(0\)\(1\)
\(+\)\(+\)\(-\)\(-\)\(+\)\(9\)\(2\)\(7\)\(8\)\(2\)\(6\)\(1\)\(0\)\(1\)
\(+\)\(-\)\(+\)\(+\)\(-\)\(13\)\(3\)\(10\)\(12\)\(3\)\(9\)\(1\)\(0\)\(1\)
\(+\)\(-\)\(+\)\(-\)\(+\)\(10\)\(0\)\(10\)\(9\)\(0\)\(9\)\(1\)\(0\)\(1\)
\(+\)\(-\)\(-\)\(+\)\(+\)\(8\)\(1\)\(7\)\(7\)\(1\)\(6\)\(1\)\(0\)\(1\)
\(+\)\(-\)\(-\)\(-\)\(-\)\(14\)\(3\)\(11\)\(13\)\(3\)\(10\)\(1\)\(0\)\(1\)
\(-\)\(+\)\(+\)\(+\)\(-\)\(9\)\(0\)\(9\)\(8\)\(0\)\(8\)\(1\)\(0\)\(1\)
\(-\)\(+\)\(+\)\(-\)\(+\)\(13\)\(2\)\(11\)\(12\)\(2\)\(10\)\(1\)\(0\)\(1\)
\(-\)\(+\)\(-\)\(+\)\(+\)\(15\)\(1\)\(14\)\(14\)\(1\)\(13\)\(1\)\(0\)\(1\)
\(-\)\(+\)\(-\)\(-\)\(-\)\(8\)\(2\)\(6\)\(7\)\(2\)\(5\)\(1\)\(0\)\(1\)
\(-\)\(-\)\(+\)\(+\)\(+\)\(14\)\(1\)\(13\)\(13\)\(1\)\(12\)\(1\)\(0\)\(1\)
\(-\)\(-\)\(+\)\(-\)\(-\)\(10\)\(2\)\(8\)\(9\)\(2\)\(7\)\(1\)\(0\)\(1\)
\(-\)\(-\)\(-\)\(+\)\(-\)\(9\)\(3\)\(6\)\(8\)\(3\)\(5\)\(1\)\(0\)\(1\)
\(-\)\(-\)\(-\)\(-\)\(+\)\(10\)\(0\)\(10\)\(9\)\(0\)\(9\)\(1\)\(0\)\(1\)
Plus space\(+\)\(84\)\(9\)\(75\)\(77\)\(9\)\(68\)\(7\)\(0\)\(7\)
Minus space\(-\)\(92\)\(16\)\(76\)\(84\)\(16\)\(68\)\(8\)\(0\)\(8\)

Trace form

\( 25 q - 3 q^{2} - 4 q^{3} + 25 q^{4} + q^{5} - 4 q^{6} + q^{7} - 3 q^{8} + 29 q^{9} + q^{10} + 4 q^{11} - 4 q^{12} + q^{13} + q^{14} + 4 q^{15} + 25 q^{16} - 6 q^{17} - 7 q^{18} - 20 q^{19} + q^{20}+ \cdots + 116 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(910))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 5 7 13
910.2.a.a 910.a 1.a $1$ $7.266$ \(\Q\) None 910.2.a.a \(-1\) \(-2\) \(-1\) \(1\) $+$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}-2q^{3}+q^{4}-q^{5}+2q^{6}+q^{7}+\cdots\)
910.2.a.b 910.a 1.a $1$ $7.266$ \(\Q\) None 910.2.a.b \(-1\) \(0\) \(-1\) \(1\) $+$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}-q^{5}+q^{7}-q^{8}-3q^{9}+\cdots\)
910.2.a.c 910.a 1.a $1$ $7.266$ \(\Q\) None 910.2.a.c \(-1\) \(0\) \(1\) \(1\) $+$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+q^{5}+q^{7}-q^{8}-3q^{9}+\cdots\)
910.2.a.d 910.a 1.a $1$ $7.266$ \(\Q\) None 910.2.a.d \(-1\) \(1\) \(-1\) \(1\) $+$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{3}+q^{4}-q^{5}-q^{6}+q^{7}+\cdots\)
910.2.a.e 910.a 1.a $1$ $7.266$ \(\Q\) None 910.2.a.e \(-1\) \(1\) \(1\) \(1\) $+$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{3}+q^{4}+q^{5}-q^{6}+q^{7}+\cdots\)
910.2.a.f 910.a 1.a $1$ $7.266$ \(\Q\) None 910.2.a.f \(1\) \(-3\) \(-1\) \(-1\) $-$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}-3q^{3}+q^{4}-q^{5}-3q^{6}-q^{7}+\cdots\)
910.2.a.g 910.a 1.a $1$ $7.266$ \(\Q\) None 910.2.a.g \(1\) \(-2\) \(-1\) \(1\) $-$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}-2q^{3}+q^{4}-q^{5}-2q^{6}+q^{7}+\cdots\)
910.2.a.h 910.a 1.a $1$ $7.266$ \(\Q\) None 910.2.a.h \(1\) \(-2\) \(1\) \(-1\) $-$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}-2q^{3}+q^{4}+q^{5}-2q^{6}-q^{7}+\cdots\)
910.2.a.i 910.a 1.a $1$ $7.266$ \(\Q\) None 910.2.a.i \(1\) \(-1\) \(-1\) \(1\) $-$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}-q^{3}+q^{4}-q^{5}-q^{6}+q^{7}+\cdots\)
910.2.a.j 910.a 1.a $1$ $7.266$ \(\Q\) None 910.2.a.j \(1\) \(0\) \(-1\) \(-1\) $-$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}-q^{5}-q^{7}+q^{8}-3q^{9}+\cdots\)
910.2.a.k 910.a 1.a $1$ $7.266$ \(\Q\) None 910.2.a.k \(1\) \(2\) \(-1\) \(1\) $-$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+2q^{3}+q^{4}-q^{5}+2q^{6}+q^{7}+\cdots\)
910.2.a.l 910.a 1.a $2$ $7.266$ \(\Q(\sqrt{17}) \) None 910.2.a.l \(-2\) \(-1\) \(-2\) \(-2\) $+$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}-\beta q^{3}+q^{4}-q^{5}+\beta q^{6}-q^{7}+\cdots\)
910.2.a.m 910.a 1.a $2$ $7.266$ \(\Q(\sqrt{2}) \) None 910.2.a.m \(-2\) \(0\) \(2\) \(2\) $+$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+\beta q^{3}+q^{4}+q^{5}-\beta q^{6}+q^{7}+\cdots\)
910.2.a.n 910.a 1.a $2$ $7.266$ \(\Q(\sqrt{5}) \) None 910.2.a.n \(-2\) \(2\) \(-2\) \(-2\) $+$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+(1+\beta )q^{3}+q^{4}-q^{5}+(-1+\cdots)q^{6}+\cdots\)
910.2.a.o 910.a 1.a $2$ $7.266$ \(\Q(\sqrt{17}) \) None 910.2.a.o \(2\) \(1\) \(2\) \(-2\) $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+\beta q^{3}+q^{4}+q^{5}+\beta q^{6}-q^{7}+\cdots\)
910.2.a.p 910.a 1.a $3$ $7.266$ 3.3.568.1 None 910.2.a.p \(-3\) \(-1\) \(3\) \(-3\) $+$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+\beta _{2}q^{3}+q^{4}+q^{5}-\beta _{2}q^{6}+\cdots\)
910.2.a.q 910.a 1.a $3$ $7.266$ 3.3.229.1 None 910.2.a.q \(3\) \(1\) \(3\) \(3\) $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}-\beta _{2}q^{3}+q^{4}+q^{5}-\beta _{2}q^{6}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(910))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(910)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(26))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(35))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(65))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(70))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(91))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(130))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(182))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(455))\)\(^{\oplus 2}\)