Defining parameters
| Level: | \( N \) | \(=\) | \( 910 = 2 \cdot 5 \cdot 7 \cdot 13 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 910.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 17 \) | ||
| Sturm bound: | \(336\) | ||
| Trace bound: | \(5\) | ||
| Distinguishing \(T_p\): | \(3\), \(11\), \(17\), \(23\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(910))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 176 | 25 | 151 |
| Cusp forms | 161 | 25 | 136 |
| Eisenstein series | 15 | 0 | 15 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(2\) | \(5\) | \(7\) | \(13\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | ||||||||
| \(+\) | \(+\) | \(+\) | \(+\) | \(+\) | \(5\) | \(2\) | \(3\) | \(5\) | \(2\) | \(3\) | \(0\) | \(0\) | \(0\) | |||
| \(+\) | \(+\) | \(+\) | \(-\) | \(-\) | \(14\) | \(2\) | \(12\) | \(13\) | \(2\) | \(11\) | \(1\) | \(0\) | \(1\) | |||
| \(+\) | \(+\) | \(-\) | \(+\) | \(-\) | \(15\) | \(1\) | \(14\) | \(14\) | \(1\) | \(13\) | \(1\) | \(0\) | \(1\) | |||
| \(+\) | \(+\) | \(-\) | \(-\) | \(+\) | \(9\) | \(2\) | \(7\) | \(8\) | \(2\) | \(6\) | \(1\) | \(0\) | \(1\) | |||
| \(+\) | \(-\) | \(+\) | \(+\) | \(-\) | \(13\) | \(3\) | \(10\) | \(12\) | \(3\) | \(9\) | \(1\) | \(0\) | \(1\) | |||
| \(+\) | \(-\) | \(+\) | \(-\) | \(+\) | \(10\) | \(0\) | \(10\) | \(9\) | \(0\) | \(9\) | \(1\) | \(0\) | \(1\) | |||
| \(+\) | \(-\) | \(-\) | \(+\) | \(+\) | \(8\) | \(1\) | \(7\) | \(7\) | \(1\) | \(6\) | \(1\) | \(0\) | \(1\) | |||
| \(+\) | \(-\) | \(-\) | \(-\) | \(-\) | \(14\) | \(3\) | \(11\) | \(13\) | \(3\) | \(10\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(+\) | \(+\) | \(+\) | \(-\) | \(9\) | \(0\) | \(9\) | \(8\) | \(0\) | \(8\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(+\) | \(+\) | \(-\) | \(+\) | \(13\) | \(2\) | \(11\) | \(12\) | \(2\) | \(10\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(+\) | \(-\) | \(+\) | \(+\) | \(15\) | \(1\) | \(14\) | \(14\) | \(1\) | \(13\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(+\) | \(-\) | \(-\) | \(-\) | \(8\) | \(2\) | \(6\) | \(7\) | \(2\) | \(5\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(-\) | \(+\) | \(+\) | \(+\) | \(14\) | \(1\) | \(13\) | \(13\) | \(1\) | \(12\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(-\) | \(+\) | \(-\) | \(-\) | \(10\) | \(2\) | \(8\) | \(9\) | \(2\) | \(7\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(-\) | \(-\) | \(+\) | \(-\) | \(9\) | \(3\) | \(6\) | \(8\) | \(3\) | \(5\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(-\) | \(-\) | \(-\) | \(+\) | \(10\) | \(0\) | \(10\) | \(9\) | \(0\) | \(9\) | \(1\) | \(0\) | \(1\) | |||
| Plus space | \(+\) | \(84\) | \(9\) | \(75\) | \(77\) | \(9\) | \(68\) | \(7\) | \(0\) | \(7\) | ||||||
| Minus space | \(-\) | \(92\) | \(16\) | \(76\) | \(84\) | \(16\) | \(68\) | \(8\) | \(0\) | \(8\) | ||||||
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(910))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(910))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(910)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(26))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(35))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(65))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(70))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(91))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(130))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(182))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(455))\)\(^{\oplus 2}\)