Defining parameters
| Level: | \( N \) | \(=\) | \( 9000 = 2^{3} \cdot 3^{2} \cdot 5^{3} \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 9000.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 34 \) | ||
| Sturm bound: | \(3600\) | ||
| Trace bound: | \(17\) | ||
| Distinguishing \(T_p\): | \(7\), \(11\), \(13\), \(17\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(9000))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 1880 | 120 | 1760 |
| Cusp forms | 1721 | 120 | 1601 |
| Eisenstein series | 159 | 0 | 159 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(2\) | \(3\) | \(5\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | |||||||
| \(+\) | \(+\) | \(+\) | \(+\) | \(230\) | \(10\) | \(220\) | \(211\) | \(10\) | \(201\) | \(19\) | \(0\) | \(19\) | |||
| \(+\) | \(+\) | \(-\) | \(-\) | \(240\) | \(14\) | \(226\) | \(220\) | \(14\) | \(206\) | \(20\) | \(0\) | \(20\) | |||
| \(+\) | \(-\) | \(+\) | \(-\) | \(240\) | \(20\) | \(220\) | \(220\) | \(20\) | \(200\) | \(20\) | \(0\) | \(20\) | |||
| \(+\) | \(-\) | \(-\) | \(+\) | \(230\) | \(16\) | \(214\) | \(210\) | \(16\) | \(194\) | \(20\) | \(0\) | \(20\) | |||
| \(-\) | \(+\) | \(+\) | \(-\) | \(240\) | \(14\) | \(226\) | \(220\) | \(14\) | \(206\) | \(20\) | \(0\) | \(20\) | |||
| \(-\) | \(+\) | \(-\) | \(+\) | \(230\) | \(10\) | \(220\) | \(210\) | \(10\) | \(200\) | \(20\) | \(0\) | \(20\) | |||
| \(-\) | \(-\) | \(+\) | \(+\) | \(230\) | \(18\) | \(212\) | \(210\) | \(18\) | \(192\) | \(20\) | \(0\) | \(20\) | |||
| \(-\) | \(-\) | \(-\) | \(-\) | \(240\) | \(18\) | \(222\) | \(220\) | \(18\) | \(202\) | \(20\) | \(0\) | \(20\) | |||
| Plus space | \(+\) | \(920\) | \(54\) | \(866\) | \(841\) | \(54\) | \(787\) | \(79\) | \(0\) | \(79\) | |||||
| Minus space | \(-\) | \(960\) | \(66\) | \(894\) | \(880\) | \(66\) | \(814\) | \(80\) | \(0\) | \(80\) | |||||
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(9000))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(9000))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(9000)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 24}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 18}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(30))\)\(^{\oplus 18}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(36))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(40))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(45))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(50))\)\(^{\oplus 18}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(72))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(75))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(90))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(100))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(120))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(125))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(150))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(180))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(200))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(225))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(250))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(300))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(360))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(375))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(450))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(500))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(600))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(750))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(900))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1000))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1125))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1500))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1800))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2250))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(3000))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(4500))\)\(^{\oplus 2}\)