Properties

Label 9000.2.a
Level $9000$
Weight $2$
Character orbit 9000.a
Rep. character $\chi_{9000}(1,\cdot)$
Character field $\Q$
Dimension $120$
Newform subspaces $34$
Sturm bound $3600$
Trace bound $17$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 9000 = 2^{3} \cdot 3^{2} \cdot 5^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9000.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 34 \)
Sturm bound: \(3600\)
Trace bound: \(17\)
Distinguishing \(T_p\): \(7\), \(11\), \(13\), \(17\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(9000))\).

Total New Old
Modular forms 1880 120 1760
Cusp forms 1721 120 1601
Eisenstein series 159 0 159

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)\(5\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(+\)\(230\)\(10\)\(220\)\(211\)\(10\)\(201\)\(19\)\(0\)\(19\)
\(+\)\(+\)\(-\)\(-\)\(240\)\(14\)\(226\)\(220\)\(14\)\(206\)\(20\)\(0\)\(20\)
\(+\)\(-\)\(+\)\(-\)\(240\)\(20\)\(220\)\(220\)\(20\)\(200\)\(20\)\(0\)\(20\)
\(+\)\(-\)\(-\)\(+\)\(230\)\(16\)\(214\)\(210\)\(16\)\(194\)\(20\)\(0\)\(20\)
\(-\)\(+\)\(+\)\(-\)\(240\)\(14\)\(226\)\(220\)\(14\)\(206\)\(20\)\(0\)\(20\)
\(-\)\(+\)\(-\)\(+\)\(230\)\(10\)\(220\)\(210\)\(10\)\(200\)\(20\)\(0\)\(20\)
\(-\)\(-\)\(+\)\(+\)\(230\)\(18\)\(212\)\(210\)\(18\)\(192\)\(20\)\(0\)\(20\)
\(-\)\(-\)\(-\)\(-\)\(240\)\(18\)\(222\)\(220\)\(18\)\(202\)\(20\)\(0\)\(20\)
Plus space\(+\)\(920\)\(54\)\(866\)\(841\)\(54\)\(787\)\(79\)\(0\)\(79\)
Minus space\(-\)\(960\)\(66\)\(894\)\(880\)\(66\)\(814\)\(80\)\(0\)\(80\)

Trace form

\( 120 q - 2 q^{11} - 2 q^{19} - 6 q^{29} + 4 q^{31} + 8 q^{41} + 120 q^{49} - 50 q^{59} - 6 q^{61} - 16 q^{71} + 96 q^{79} - 4 q^{89} + 92 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(9000))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3 5
9000.2.a.a 9000.a 1.a $2$ $71.865$ \(\Q(\sqrt{5}) \) None 3000.2.a.d \(0\) \(0\) \(0\) \(-5\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+(-2-\beta )q^{7}+q^{11}+(1+2\beta )q^{13}+\cdots\)
9000.2.a.b 9000.a 1.a $2$ $71.865$ \(\Q(\sqrt{5}) \) None 3000.2.a.c \(0\) \(0\) \(0\) \(-4\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-2q^{7}-2q^{11}+(-2-2\beta )q^{13}+(2+\cdots)q^{17}+\cdots\)
9000.2.a.c 9000.a 1.a $2$ $71.865$ \(\Q(\sqrt{5}) \) None 1000.2.a.b \(0\) \(0\) \(0\) \(-4\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+(-1-2\beta )q^{7}+(3+2\beta )q^{11}+(4-\beta )q^{13}+\cdots\)
9000.2.a.d 9000.a 1.a $2$ $71.865$ \(\Q(\sqrt{5}) \) None 9000.2.a.d \(0\) \(0\) \(0\) \(-2\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-2\beta q^{7}+(-2+2\beta )q^{11}+2\beta q^{13}+\cdots\)
9000.2.a.e 9000.a 1.a $2$ $71.865$ \(\Q(\sqrt{5}) \) None 9000.2.a.d \(0\) \(0\) \(0\) \(-2\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-2\beta q^{7}+(2-2\beta )q^{11}+2\beta q^{13}+(1+\cdots)q^{17}+\cdots\)
9000.2.a.f 9000.a 1.a $2$ $71.865$ \(\Q(\sqrt{5}) \) None 1000.2.a.a \(0\) \(0\) \(0\) \(-1\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q-\beta q^{7}+(-2+2\beta )q^{11}+(-2+2\beta )q^{13}+\cdots\)
9000.2.a.g 9000.a 1.a $2$ $71.865$ \(\Q(\sqrt{5}) \) None 3000.2.a.a \(0\) \(0\) \(0\) \(-1\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q-\beta q^{7}+3q^{11}+3q^{13}-3\beta q^{17}+\cdots\)
9000.2.a.h 9000.a 1.a $2$ $71.865$ \(\Q(\sqrt{5}) \) None 3000.2.a.b \(0\) \(0\) \(0\) \(0\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+2\beta q^{11}+(-4+2\beta )q^{13}+(6-3\beta )q^{17}+\cdots\)
9000.2.a.i 9000.a 1.a $2$ $71.865$ \(\Q(\sqrt{5}) \) None 3000.2.a.b \(0\) \(0\) \(0\) \(0\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+2\beta q^{11}+(4-2\beta )q^{13}+(-6+3\beta )q^{17}+\cdots\)
9000.2.a.j 9000.a 1.a $2$ $71.865$ \(\Q(\sqrt{5}) \) None 1000.2.a.a \(0\) \(0\) \(0\) \(1\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta q^{7}+(-2+2\beta )q^{11}+(2-2\beta )q^{13}+\cdots\)
9000.2.a.k 9000.a 1.a $2$ $71.865$ \(\Q(\sqrt{5}) \) None 3000.2.a.a \(0\) \(0\) \(0\) \(1\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta q^{7}+3q^{11}-3q^{13}+3\beta q^{17}+\cdots\)
9000.2.a.l 9000.a 1.a $2$ $71.865$ \(\Q(\sqrt{5}) \) None 9000.2.a.d \(0\) \(0\) \(0\) \(2\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+2\beta q^{7}+(-2+2\beta )q^{11}-2\beta q^{13}+\cdots\)
9000.2.a.m 9000.a 1.a $2$ $71.865$ \(\Q(\sqrt{5}) \) None 9000.2.a.d \(0\) \(0\) \(0\) \(2\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q+2\beta q^{7}+(2-2\beta )q^{11}-2\beta q^{13}+(-1+\cdots)q^{17}+\cdots\)
9000.2.a.n 9000.a 1.a $2$ $71.865$ \(\Q(\sqrt{5}) \) None 3000.2.a.c \(0\) \(0\) \(0\) \(4\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+2q^{7}-2q^{11}+(2+2\beta )q^{13}+(-2+\cdots)q^{17}+\cdots\)
9000.2.a.o 9000.a 1.a $2$ $71.865$ \(\Q(\sqrt{5}) \) None 1000.2.a.b \(0\) \(0\) \(0\) \(4\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+(1+2\beta )q^{7}+(3+2\beta )q^{11}+(-4+\beta )q^{13}+\cdots\)
9000.2.a.p 9000.a 1.a $2$ $71.865$ \(\Q(\sqrt{5}) \) None 3000.2.a.d \(0\) \(0\) \(0\) \(5\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+(3-\beta )q^{7}+q^{11}+(-3+2\beta )q^{13}+\cdots\)
9000.2.a.q 9000.a 1.a $4$ $71.865$ 4.4.10025.1 None 1000.2.a.f \(0\) \(0\) \(0\) \(-9\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+(-2+\beta _{2}+\beta _{3})q^{7}+(-1-\beta _{1})q^{11}+\cdots\)
9000.2.a.r 9000.a 1.a $4$ $71.865$ 4.4.4400.1 None 1000.2.a.e \(0\) \(0\) \(0\) \(-6\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+(-2-\beta _{2}+\beta _{3})q^{7}+2\beta _{3}q^{11}+(2\beta _{1}+\cdots)q^{13}+\cdots\)
9000.2.a.s 9000.a 1.a $4$ $71.865$ 4.4.13025.1 None 3000.2.a.i \(0\) \(0\) \(0\) \(-3\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{1})q^{7}+(-1+\beta _{1}-\beta _{2}-\beta _{3})q^{11}+\cdots\)
9000.2.a.t 9000.a 1.a $4$ $71.865$ 4.4.47025.1 None 3000.2.a.j \(0\) \(0\) \(0\) \(-3\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+(-1-\beta _{1}+\beta _{2})q^{7}+(\beta _{1}-2\beta _{2})q^{11}+\cdots\)
9000.2.a.u 9000.a 1.a $4$ $71.865$ 4.4.13025.1 None 3000.2.a.k \(0\) \(0\) \(0\) \(-1\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{1}+\beta _{3})q^{7}+(-\beta _{1}+\beta _{2}+\cdots)q^{11}+\cdots\)
9000.2.a.v 9000.a 1.a $4$ $71.865$ 4.4.36025.1 None 3000.2.a.l \(0\) \(0\) \(0\) \(-1\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{7}+(1+2\beta _{2}+\beta _{3})q^{11}+(1+2\beta _{2}+\cdots)q^{13}+\cdots\)
9000.2.a.w 9000.a 1.a $4$ $71.865$ 4.4.36025.1 None 3000.2.a.l \(0\) \(0\) \(0\) \(1\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{7}+(1+2\beta _{2}+\beta _{3})q^{11}+(-1+\cdots)q^{13}+\cdots\)
9000.2.a.x 9000.a 1.a $4$ $71.865$ 4.4.13025.1 None 3000.2.a.k \(0\) \(0\) \(0\) \(1\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{1}-\beta _{2}+\beta _{3})q^{7}+(\beta _{1}-\beta _{3})q^{11}+\cdots\)
9000.2.a.y 9000.a 1.a $4$ $71.865$ 4.4.47025.1 None 3000.2.a.j \(0\) \(0\) \(0\) \(3\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+(1+\beta _{1}-\beta _{2})q^{7}+(\beta _{1}-2\beta _{2})q^{11}+\cdots\)
9000.2.a.z 9000.a 1.a $4$ $71.865$ 4.4.13025.1 None 3000.2.a.i \(0\) \(0\) \(0\) \(3\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+(1-\beta _{1})q^{7}+(-1+\beta _{1}-\beta _{2}-\beta _{3})q^{11}+\cdots\)
9000.2.a.ba 9000.a 1.a $4$ $71.865$ 4.4.4400.1 None 1000.2.a.e \(0\) \(0\) \(0\) \(6\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+(2+\beta _{2}+\beta _{3})q^{7}-2\beta _{3}q^{11}+(2\beta _{1}+\cdots)q^{13}+\cdots\)
9000.2.a.bb 9000.a 1.a $4$ $71.865$ 4.4.10025.1 None 1000.2.a.f \(0\) \(0\) \(0\) \(9\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+(2+\beta _{3})q^{7}+(-2+\beta _{1}-\beta _{2})q^{11}+\cdots\)
9000.2.a.bc 9000.a 1.a $6$ $71.865$ 6.6.239482000.1 None 9000.2.a.bc \(0\) \(0\) \(0\) \(-4\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{1})q^{7}+(\beta _{3}-\beta _{5})q^{11}+(-\beta _{2}+\cdots)q^{13}+\cdots\)
9000.2.a.bd 9000.a 1.a $6$ $71.865$ 6.6.239482000.1 None 9000.2.a.bc \(0\) \(0\) \(0\) \(-4\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{1})q^{7}+(-\beta _{3}+\beta _{5})q^{11}+\cdots\)
9000.2.a.be 9000.a 1.a $6$ $71.865$ 6.6.239482000.1 None 9000.2.a.bc \(0\) \(0\) \(0\) \(4\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+(1-\beta _{1})q^{7}+(\beta _{3}-\beta _{5})q^{11}+(\beta _{2}+\beta _{5})q^{13}+\cdots\)
9000.2.a.bf 9000.a 1.a $6$ $71.865$ 6.6.239482000.1 None 9000.2.a.bc \(0\) \(0\) \(0\) \(4\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+(1-\beta _{1})q^{7}+(-\beta _{3}+\beta _{5})q^{11}+(\beta _{2}+\cdots)q^{13}+\cdots\)
9000.2.a.bg 9000.a 1.a $8$ $71.865$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 9000.2.a.bg \(0\) \(0\) \(0\) \(0\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{4}q^{7}+(-\beta _{2}+\beta _{7})q^{11}+(-\beta _{2}+\cdots)q^{13}+\cdots\)
9000.2.a.bh 9000.a 1.a $8$ $71.865$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 9000.2.a.bg \(0\) \(0\) \(0\) \(0\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{4}q^{7}+(\beta _{2}-\beta _{7})q^{11}+(-\beta _{2}-\beta _{4}+\cdots)q^{13}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(9000))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(9000)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 24}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 18}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(30))\)\(^{\oplus 18}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(36))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(40))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(45))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(50))\)\(^{\oplus 18}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(72))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(75))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(90))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(100))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(120))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(125))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(150))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(180))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(200))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(225))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(250))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(300))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(360))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(375))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(450))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(500))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(600))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(750))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(900))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1000))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1125))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1500))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1800))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2250))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(3000))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(4500))\)\(^{\oplus 2}\)