Defining parameters
| Level: | \( N \) | \(=\) | \( 900 = 2^{2} \cdot 3^{2} \cdot 5^{2} \) |
| Weight: | \( k \) | \(=\) | \( 3 \) |
| Character orbit: | \([\chi]\) | \(=\) | 900.c (of order \(2\) and degree \(1\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 4 \) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 21 \) | ||
| Sturm bound: | \(540\) | ||
| Trace bound: | \(13\) | ||
| Distinguishing \(T_p\): | \(7\), \(13\), \(17\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(900, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 384 | 98 | 286 |
| Cusp forms | 336 | 92 | 244 |
| Eisenstein series | 48 | 6 | 42 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(900, [\chi])\) into newform subspaces
Decomposition of \(S_{3}^{\mathrm{old}}(900, [\chi])\) into lower level spaces
\( S_{3}^{\mathrm{old}}(900, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(12, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(20, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(36, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(60, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(100, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(180, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(300, [\chi])\)\(^{\oplus 2}\)