Properties

Label 900.3.c
Level $900$
Weight $3$
Character orbit 900.c
Rep. character $\chi_{900}(451,\cdot)$
Character field $\Q$
Dimension $92$
Newform subspaces $21$
Sturm bound $540$
Trace bound $13$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 900 = 2^{2} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 900.c (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 4 \)
Character field: \(\Q\)
Newform subspaces: \( 21 \)
Sturm bound: \(540\)
Trace bound: \(13\)
Distinguishing \(T_p\): \(7\), \(13\), \(17\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(900, [\chi])\).

Total New Old
Modular forms 384 98 286
Cusp forms 336 92 244
Eisenstein series 48 6 42

Trace form

\( 92 q + 2 q^{4} - 12 q^{8} - 24 q^{14} - 22 q^{16} - 4 q^{17} - 8 q^{22} - 44 q^{26} + 56 q^{28} - 20 q^{29} + 20 q^{32} - 6 q^{34} - 88 q^{37} + 112 q^{38} + 4 q^{41} - 90 q^{44} + 84 q^{46} - 556 q^{49}+ \cdots + 760 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(900, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
900.3.c.a 900.c 4.b $1$ $24.523$ \(\Q\) \(\Q(\sqrt{-1}) \) 20.3.d.c \(-2\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q-2q^{2}+4q^{4}-8q^{8}-24q^{13}+2^{4}q^{16}+\cdots\)
900.3.c.b 900.c 4.b $1$ $24.523$ \(\Q\) \(\Q(\sqrt{-1}) \) 36.3.d.a \(-2\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q-2q^{2}+4q^{4}-8q^{8}+10q^{13}+2^{4}q^{16}+\cdots\)
900.3.c.c 900.c 4.b $1$ $24.523$ \(\Q\) \(\Q(\sqrt{-1}) \) 36.3.d.a \(2\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q+2q^{2}+4q^{4}+8q^{8}+10q^{13}+2^{4}q^{16}+\cdots\)
900.3.c.d 900.c 4.b $1$ $24.523$ \(\Q\) \(\Q(\sqrt{-1}) \) 20.3.d.c \(2\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q+2q^{2}+4q^{4}+8q^{8}+24q^{13}+2^{4}q^{16}+\cdots\)
900.3.c.e 900.c 4.b $2$ $24.523$ \(\Q(\sqrt{-3}) \) None 12.3.d.a \(-2\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(\beta-1)q^{2}+(-2\beta-2)q^{4}-4\beta q^{7}+\cdots\)
900.3.c.f 900.c 4.b $2$ $24.523$ \(\Q(\sqrt{-3}) \) None 60.3.f.a \(-2\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-\beta-1)q^{2}+(2\beta-2)q^{4}-6\beta q^{7}+\cdots\)
900.3.c.g 900.c 4.b $2$ $24.523$ \(\Q(\sqrt{-15}) \) \(\Q(\sqrt{-15}) \) 180.3.f.f \(-1\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q-\beta q^{2}+(-4+\beta )q^{4}+(4+3\beta )q^{8}+\cdots\)
900.3.c.h 900.c 4.b $2$ $24.523$ \(\Q(\sqrt{-1}) \) \(\Q(\sqrt{-5}) \) 20.3.d.a \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q-\beta q^{2}-4 q^{4}+2\beta q^{7}+4\beta q^{8}+\cdots\)
900.3.c.i 900.c 4.b $2$ $24.523$ \(\Q(\sqrt{-15}) \) \(\Q(\sqrt{-15}) \) 180.3.f.f \(1\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q+(1-\beta )q^{2}+(-3-\beta )q^{4}+(-7+3\beta )q^{8}+\cdots\)
900.3.c.j 900.c 4.b $2$ $24.523$ \(\Q(\sqrt{-3}) \) None 60.3.f.a \(2\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-\beta+1)q^{2}+(-2\beta-2)q^{4}-6\beta q^{7}+\cdots\)
900.3.c.k 900.c 4.b $4$ $24.523$ \(\Q(\zeta_{10})\) None 20.3.b.a \(-2\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta_1 q^{2}+(\beta_{3}+\beta_{2}+\beta_1-1)q^{4}+\cdots\)
900.3.c.l 900.c 4.b $4$ $24.523$ 4.0.8405.1 None 100.3.b.d \(-1\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{2}q^{2}+(1-\beta _{1}-\beta _{2}-\beta _{3})q^{4}+(2\beta _{1}+\cdots)q^{7}+\cdots\)
900.3.c.m 900.c 4.b $4$ $24.523$ 4.0.8405.1 None 100.3.b.d \(1\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{2}q^{2}+(1+\beta _{1}+\beta _{2}-\beta _{3})q^{4}+(2\beta _{1}+\cdots)q^{7}+\cdots\)
900.3.c.n 900.c 4.b $8$ $24.523$ 8.0.4069419264.1 None 300.3.c.e \(-2\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{4}q^{2}+(-1+\beta _{7})q^{4}+(-\beta _{5}-\beta _{6}+\cdots)q^{7}+\cdots\)
900.3.c.o 900.c 4.b $8$ $24.523$ 8.0.\(\cdots\).1 None 180.3.c.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}+(-2+\beta _{3})q^{4}+(-\beta _{3}-\beta _{7})q^{7}+\cdots\)
900.3.c.p 900.c 4.b $8$ $24.523$ 8.0.\(\cdots\).1 None 900.3.c.p \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{6}q^{2}+(1+\beta _{7})q^{4}-\beta _{2}q^{7}+(-\beta _{5}+\cdots)q^{8}+\cdots\)
900.3.c.q 900.c 4.b $8$ $24.523$ 8.0.\(\cdots\).1 None 900.3.c.p \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{1}q^{2}+\beta _{2}q^{4}-\beta _{4}q^{7}-\beta _{3}q^{8}+\cdots\)
900.3.c.r 900.c 4.b $8$ $24.523$ 8.0.6080256576.2 None 60.3.f.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{2}q^{2}+(1+\beta _{7})q^{4}+(\beta _{2}+\beta _{4})q^{7}+\cdots\)
900.3.c.s 900.c 4.b $8$ $24.523$ 8.0.\(\cdots\).9 None 180.3.f.d \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(\beta _{1}-\beta _{2})q^{2}+(2-\beta _{5})q^{4}-\beta _{3}q^{7}+\cdots\)
900.3.c.t 900.c 4.b $8$ $24.523$ 8.0.4069419264.1 None 300.3.c.e \(2\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{2}q^{2}+(-1+\beta _{2}-\beta _{3}+\beta _{5})q^{4}+\cdots\)
900.3.c.u 900.c 4.b $8$ $24.523$ 8.0.85100625.1 None 60.3.c.a \(4\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(1-\beta _{5})q^{2}+(1-\beta _{4})q^{4}+(-1-\beta _{3}+\cdots)q^{7}+\cdots\)

Decomposition of \(S_{3}^{\mathrm{old}}(900, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(900, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(12, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(20, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(36, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(60, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(100, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(180, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(300, [\chi])\)\(^{\oplus 2}\)