Properties

Label 9.20.a
Level $9$
Weight $20$
Character orbit 9.a
Rep. character $\chi_{9}(1,\cdot)$
Character field $\Q$
Dimension $8$
Newform subspaces $4$
Sturm bound $20$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 9 = 3^{2} \)
Weight: \( k \) \(=\) \( 20 \)
Character orbit: \([\chi]\) \(=\) 9.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 4 \)
Sturm bound: \(20\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{20}(\Gamma_0(9))\).

Total New Old
Modular forms 21 9 12
Cusp forms 17 8 9
Eisenstein series 4 1 3

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(3\)TotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(11\)\(4\)\(7\)\(9\)\(4\)\(5\)\(2\)\(0\)\(2\)
\(-\)\(10\)\(5\)\(5\)\(8\)\(4\)\(4\)\(2\)\(1\)\(1\)

Trace form

\( 8 q - 54 q^{2} + 1947188 q^{4} - 7155000 q^{5} + 67656016 q^{7} - 437224824 q^{8} - 76895100 q^{10} + 9413141328 q^{11} + 15106490176 q^{13} - 147516385248 q^{14} + 254566114448 q^{16} + 224630946360 q^{17}+ \cdots + 49\!\cdots\!46 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{20}^{\mathrm{new}}(\Gamma_0(9))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 3
9.20.a.a 9.a 1.a $1$ $20.594$ \(\Q\) None 1.20.a.a \(-456\) \(0\) \(2377410\) \(-16917544\) $-$ $\mathrm{SU}(2)$ \(q-456q^{2}-316352q^{4}+2377410q^{5}+\cdots\)
9.20.a.b 9.a 1.a $1$ $20.594$ \(\Q\) None 3.20.a.a \(1104\) \(0\) \(-3516270\) \(-195590584\) $-$ $\mathrm{SU}(2)$ \(q+1104q^{2}+694528q^{4}-3516270q^{5}+\cdots\)
9.20.a.c 9.a 1.a $2$ $20.594$ \(\Q(\sqrt{87481}) \) None 3.20.a.b \(-702\) \(0\) \(-6016140\) \(113892064\) $-$ $\mathrm{SU}(2)$ \(q+(-351-\beta )q^{2}+(386242+702\beta )q^{4}+\cdots\)
9.20.a.d 9.a 1.a $4$ $20.594$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 9.20.a.d \(0\) \(0\) \(0\) \(166272080\) $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(199132+\beta _{3})q^{4}+(-1304\beta _{1}+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{20}^{\mathrm{old}}(\Gamma_0(9))\) into lower level spaces

\( S_{20}^{\mathrm{old}}(\Gamma_0(9)) \simeq \) \(S_{20}^{\mathrm{new}}(\Gamma_0(1))\)\(^{\oplus 3}\)\(\oplus\)\(S_{20}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 2}\)