Defining parameters
| Level: | \( N \) | \(=\) | \( 9 = 3^{2} \) |
| Weight: | \( k \) | \(=\) | \( 20 \) |
| Character orbit: | \([\chi]\) | \(=\) | 9.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 4 \) | ||
| Sturm bound: | \(20\) | ||
| Trace bound: | \(2\) | ||
| Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{20}(\Gamma_0(9))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 21 | 9 | 12 |
| Cusp forms | 17 | 8 | 9 |
| Eisenstein series | 4 | 1 | 3 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(3\) | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | ||||
| \(+\) | \(11\) | \(4\) | \(7\) | \(9\) | \(4\) | \(5\) | \(2\) | \(0\) | \(2\) | |||
| \(-\) | \(10\) | \(5\) | \(5\) | \(8\) | \(4\) | \(4\) | \(2\) | \(1\) | \(1\) | |||
Trace form
Decomposition of \(S_{20}^{\mathrm{new}}(\Gamma_0(9))\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | ||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 3 | |||||||
| 9.20.a.a | $1$ | $20.594$ | \(\Q\) | None | \(-456\) | \(0\) | \(2377410\) | \(-16917544\) | $-$ | \(q-456q^{2}-316352q^{4}+2377410q^{5}+\cdots\) | |
| 9.20.a.b | $1$ | $20.594$ | \(\Q\) | None | \(1104\) | \(0\) | \(-3516270\) | \(-195590584\) | $-$ | \(q+1104q^{2}+694528q^{4}-3516270q^{5}+\cdots\) | |
| 9.20.a.c | $2$ | $20.594$ | \(\Q(\sqrt{87481}) \) | None | \(-702\) | \(0\) | \(-6016140\) | \(113892064\) | $-$ | \(q+(-351-\beta )q^{2}+(386242+702\beta )q^{4}+\cdots\) | |
| 9.20.a.d | $4$ | $20.594$ | \(\mathbb{Q}[x]/(x^{4} - \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(166272080\) | $+$ | \(q+\beta _{1}q^{2}+(199132+\beta _{3})q^{4}+(-1304\beta _{1}+\cdots)q^{5}+\cdots\) | |
Decomposition of \(S_{20}^{\mathrm{old}}(\Gamma_0(9))\) into lower level spaces
\( S_{20}^{\mathrm{old}}(\Gamma_0(9)) \simeq \) \(S_{20}^{\mathrm{new}}(\Gamma_0(1))\)\(^{\oplus 3}\)\(\oplus\)\(S_{20}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 2}\)