Properties

Label 9.19.b
Level $9$
Weight $19$
Character orbit 9.b
Rep. character $\chi_{9}(8,\cdot)$
Character field $\Q$
Dimension $6$
Newform subspaces $1$
Sturm bound $19$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 9 = 3^{2} \)
Weight: \( k \) \(=\) \( 19 \)
Character orbit: \([\chi]\) \(=\) 9.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 3 \)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(19\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{19}(9, [\chi])\).

Total New Old
Modular forms 20 6 14
Cusp forms 16 6 10
Eisenstein series 4 0 4

Trace form

\( 6 q - 252228 q^{4} + 19180488 q^{7} - 1977017220 q^{10} - 9548549232 q^{13} - 207185871864 q^{16} - 656204938080 q^{19} - 7584065488368 q^{22} - 21243296221590 q^{25} - 29705497415664 q^{28} - 98608210584 q^{31}+ \cdots + 35\!\cdots\!64 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{19}^{\mathrm{new}}(9, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
9.19.b.a 9.b 3.b $6$ $18.485$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 9.19.b.a \(0\) \(0\) \(0\) \(19180488\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}+(-42038-\beta _{2})q^{4}+(1082\beta _{1}+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{19}^{\mathrm{old}}(9, [\chi])\) into lower level spaces

\( S_{19}^{\mathrm{old}}(9, [\chi]) \simeq \) \(S_{19}^{\mathrm{new}}(3, [\chi])\)\(^{\oplus 2}\)