Defining parameters
| Level: | \( N \) | \(=\) | \( 8925 = 3 \cdot 5^{2} \cdot 7 \cdot 17 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 8925.ga (of order \(24\) and degree \(8\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 595 \) |
| Character field: | \(\Q(\zeta_{24})\) | ||
| Sturm bound: | \(2880\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(8925, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 11712 | 3456 | 8256 |
| Cusp forms | 11328 | 3456 | 7872 |
| Eisenstein series | 384 | 0 | 384 |
Decomposition of \(S_{2}^{\mathrm{new}}(8925, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(8925, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(8925, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(595, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1785, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(2975, [\chi])\)\(^{\oplus 2}\)