Properties

Label 890.2.bb
Level 890890
Weight 22
Character orbit 890.bb
Rep. character χ890(7,)\chi_{890}(7,\cdot)
Character field Q(ζ88)\Q(\zeta_{88})
Dimension 18001800
Newform subspaces 22
Sturm bound 270270
Trace bound 11

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 890=2589 890 = 2 \cdot 5 \cdot 89
Weight: k k == 2 2
Character orbit: [χ][\chi] == 890.bb (of order 8888 and degree 4040)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 445 445
Character field: Q(ζ88)\Q(\zeta_{88})
Newform subspaces: 2 2
Sturm bound: 270270
Trace bound: 11
Distinguishing TpT_p: 33

Dimensions

The following table gives the dimensions of various subspaces of M2(890,[χ])M_{2}(890, [\chi]).

Total New Old
Modular forms 5560 1800 3760
Cusp forms 5240 1800 3440
Eisenstein series 320 0 320

Trace form

1800q+8q34q58q6+8q98q128q13+8q14+8q15+180q16+8q21144q228q2320q25+8q26+32q27+28q29+16q30+32q33+80q99+O(q100) 1800 q + 8 q^{3} - 4 q^{5} - 8 q^{6} + 8 q^{9} - 8 q^{12} - 8 q^{13} + 8 q^{14} + 8 q^{15} + 180 q^{16} + 8 q^{21} - 144 q^{22} - 8 q^{23} - 20 q^{25} + 8 q^{26} + 32 q^{27} + 28 q^{29} + 16 q^{30} + 32 q^{33}+ \cdots - 80 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(890,[χ])S_{2}^{\mathrm{new}}(890, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
890.2.bb.a 890.bb 445.aa 880880 7.1077.107 None 890.2.y.a 00 44 00 44 SU(2)[C88]\mathrm{SU}(2)[C_{88}]
890.2.bb.b 890.bb 445.aa 920920 7.1077.107 None 890.2.y.b 00 44 4-4 4-4 SU(2)[C88]\mathrm{SU}(2)[C_{88}]

Decomposition of S2old(890,[χ])S_{2}^{\mathrm{old}}(890, [\chi]) into lower level spaces

S2old(890,[χ]) S_{2}^{\mathrm{old}}(890, [\chi]) \simeq S2new(445,[χ])S_{2}^{\mathrm{new}}(445, [\chi])2^{\oplus 2}