Properties

Label 880.3.i
Level $880$
Weight $3$
Character orbit 880.i
Rep. character $\chi_{880}(769,\cdot)$
Character field $\Q$
Dimension $70$
Newform subspaces $9$
Sturm bound $432$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 880 = 2^{4} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 880.i (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 55 \)
Character field: \(\Q\)
Newform subspaces: \( 9 \)
Sturm bound: \(432\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(3\), \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(880, [\chi])\).

Total New Old
Modular forms 300 74 226
Cusp forms 276 70 206
Eisenstein series 24 4 20

Trace form

\( 70 q - 2 q^{5} - 202 q^{9} + 2 q^{11} + 8 q^{15} - 18 q^{25} + 4 q^{31} - 34 q^{45} + 194 q^{49} + 114 q^{55} + 36 q^{59} + 32 q^{69} - 220 q^{71} + 272 q^{75} + 518 q^{81} - 116 q^{89} + 104 q^{91} + 274 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(880, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
880.3.i.a 880.i 55.d $2$ $23.978$ \(\Q(\sqrt{11}) \) \(\Q(\sqrt{-55}) \) 55.3.d.c \(0\) \(0\) \(-10\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q-5q^{5}+\beta q^{7}+9q^{9}-11q^{11}+\beta q^{13}+\cdots\)
880.3.i.b 880.i 55.d $2$ $23.978$ \(\Q(\sqrt{-11}) \) \(\Q(\sqrt{-11}) \) 55.3.d.a \(0\) \(0\) \(1\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q+(1-2\beta )q^{3}+(-1+3\beta )q^{5}-2q^{9}+\cdots\)
880.3.i.c 880.i 55.d $2$ $23.978$ \(\Q(\sqrt{5}) \) \(\Q(\sqrt{-55}) \) 55.3.d.b \(0\) \(0\) \(10\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q+5q^{5}+\beta q^{7}+9q^{9}+11q^{11}-5\beta q^{13}+\cdots\)
880.3.i.d 880.i 55.d $4$ $23.978$ \(\Q(\sqrt{5}, \sqrt{-21})\) None 55.3.d.d \(0\) \(0\) \(-8\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{3}+(-2+\beta _{1})q^{5}+5\beta _{2}q^{7}+\cdots\)
880.3.i.e 880.i 55.d $4$ $23.978$ \(\Q(\sqrt{-3}, \sqrt{-11})\) \(\Q(\sqrt{-11}) \) 220.3.e.a \(0\) \(0\) \(-1\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q+\beta _{3}q^{3}-\beta _{2}q^{5}+(-13-2\beta _{1}-2\beta _{2}+\cdots)q^{9}+\cdots\)
880.3.i.f 880.i 55.d $4$ $23.978$ \(\Q(\sqrt{2}, \sqrt{-13})\) None 110.3.c.a \(0\) \(0\) \(20\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{3}+5q^{5}+2\beta _{2}q^{7}-17q^{9}+\cdots\)
880.3.i.g 880.i 55.d $8$ $23.978$ 8.0.\(\cdots\).7 None 110.3.c.b \(0\) \(0\) \(-10\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{3}+(-1+\beta _{5})q^{5}-\beta _{2}q^{7}+(3+\cdots)q^{9}+\cdots\)
880.3.i.h 880.i 55.d $8$ $23.978$ \(\mathbb{Q}[x]/(x^{8} + \cdots)\) None 220.3.e.b \(0\) \(0\) \(-4\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{4}q^{3}+(\beta _{1}+\beta _{4}+\beta _{6})q^{5}+\beta _{2}q^{7}+\cdots\)
880.3.i.i 880.i 55.d $36$ $23.978$ None 440.3.i.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$

Decomposition of \(S_{3}^{\mathrm{old}}(880, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(880, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(55, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(110, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(220, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(440, [\chi])\)\(^{\oplus 2}\)