Defining parameters
Level: | \( N \) | \(=\) | \( 8732 = 2^{2} \cdot 37 \cdot 59 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 8732.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 6 \) | ||
Sturm bound: | \(2280\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(8732))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1146 | 174 | 972 |
Cusp forms | 1135 | 174 | 961 |
Eisenstein series | 11 | 0 | 11 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(37\) | \(59\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | |||||||
\(+\) | \(+\) | \(+\) | \(+\) | \(122\) | \(0\) | \(122\) | \(121\) | \(0\) | \(121\) | \(1\) | \(0\) | \(1\) | |||
\(+\) | \(+\) | \(-\) | \(-\) | \(164\) | \(0\) | \(164\) | \(162\) | \(0\) | \(162\) | \(2\) | \(0\) | \(2\) | |||
\(+\) | \(-\) | \(+\) | \(-\) | \(165\) | \(0\) | \(165\) | \(163\) | \(0\) | \(163\) | \(2\) | \(0\) | \(2\) | |||
\(+\) | \(-\) | \(-\) | \(+\) | \(123\) | \(0\) | \(123\) | \(121\) | \(0\) | \(121\) | \(2\) | \(0\) | \(2\) | |||
\(-\) | \(+\) | \(+\) | \(-\) | \(133\) | \(42\) | \(91\) | \(132\) | \(42\) | \(90\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(+\) | \(-\) | \(+\) | \(154\) | \(45\) | \(109\) | \(153\) | \(45\) | \(108\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(-\) | \(+\) | \(+\) | \(153\) | \(42\) | \(111\) | \(152\) | \(42\) | \(110\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(-\) | \(-\) | \(-\) | \(132\) | \(45\) | \(87\) | \(131\) | \(45\) | \(86\) | \(1\) | \(0\) | \(1\) | |||
Plus space | \(+\) | \(552\) | \(87\) | \(465\) | \(547\) | \(87\) | \(460\) | \(5\) | \(0\) | \(5\) | |||||
Minus space | \(-\) | \(594\) | \(87\) | \(507\) | \(588\) | \(87\) | \(501\) | \(6\) | \(0\) | \(6\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(8732))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 37 | 59 | |||||||
8732.2.a.a | $1$ | $69.725$ | \(\Q\) | None | \(0\) | \(-1\) | \(2\) | \(-3\) | $-$ | $-$ | $-$ | \(q-q^{3}+2q^{5}-3q^{7}-2q^{9}-5q^{11}+\cdots\) | |
8732.2.a.b | $1$ | $69.725$ | \(\Q\) | None | \(0\) | \(0\) | \(-2\) | \(-1\) | $-$ | $+$ | $+$ | \(q-2q^{5}-q^{7}-3q^{9}-4q^{11}-q^{13}+\cdots\) | |
8732.2.a.c | $41$ | $69.725$ | None | \(0\) | \(7\) | \(5\) | \(13\) | $-$ | $+$ | $+$ | |||
8732.2.a.d | $42$ | $69.725$ | None | \(0\) | \(-9\) | \(-3\) | \(-24\) | $-$ | $-$ | $+$ | |||
8732.2.a.e | $44$ | $69.725$ | None | \(0\) | \(10\) | \(1\) | \(25\) | $-$ | $-$ | $-$ | |||
8732.2.a.f | $45$ | $69.725$ | None | \(0\) | \(-7\) | \(-3\) | \(-14\) | $-$ | $+$ | $-$ |
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(8732))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(8732)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(37))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(59))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(74))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(118))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(148))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(236))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2183))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(4366))\)\(^{\oplus 2}\)