Properties

Label 8732.2.a
Level $8732$
Weight $2$
Character orbit 8732.a
Rep. character $\chi_{8732}(1,\cdot)$
Character field $\Q$
Dimension $174$
Newform subspaces $6$
Sturm bound $2280$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 8732 = 2^{2} \cdot 37 \cdot 59 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8732.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 6 \)
Sturm bound: \(2280\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(8732))\).

Total New Old
Modular forms 1146 174 972
Cusp forms 1135 174 961
Eisenstein series 11 0 11

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(37\)\(59\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(+\)\(122\)\(0\)\(122\)\(121\)\(0\)\(121\)\(1\)\(0\)\(1\)
\(+\)\(+\)\(-\)\(-\)\(164\)\(0\)\(164\)\(162\)\(0\)\(162\)\(2\)\(0\)\(2\)
\(+\)\(-\)\(+\)\(-\)\(165\)\(0\)\(165\)\(163\)\(0\)\(163\)\(2\)\(0\)\(2\)
\(+\)\(-\)\(-\)\(+\)\(123\)\(0\)\(123\)\(121\)\(0\)\(121\)\(2\)\(0\)\(2\)
\(-\)\(+\)\(+\)\(-\)\(133\)\(42\)\(91\)\(132\)\(42\)\(90\)\(1\)\(0\)\(1\)
\(-\)\(+\)\(-\)\(+\)\(154\)\(45\)\(109\)\(153\)\(45\)\(108\)\(1\)\(0\)\(1\)
\(-\)\(-\)\(+\)\(+\)\(153\)\(42\)\(111\)\(152\)\(42\)\(110\)\(1\)\(0\)\(1\)
\(-\)\(-\)\(-\)\(-\)\(132\)\(45\)\(87\)\(131\)\(45\)\(86\)\(1\)\(0\)\(1\)
Plus space\(+\)\(552\)\(87\)\(465\)\(547\)\(87\)\(460\)\(5\)\(0\)\(5\)
Minus space\(-\)\(594\)\(87\)\(507\)\(588\)\(87\)\(501\)\(6\)\(0\)\(6\)

Trace form

\( 174 q - 4 q^{7} + 174 q^{9} - 12 q^{11} - 8 q^{13} - 22 q^{15} - 2 q^{17} - 4 q^{19} + 18 q^{21} + 16 q^{23} + 162 q^{25} - 6 q^{27} + 12 q^{29} + 8 q^{31} + 32 q^{33} + 6 q^{35} + 8 q^{39} + 4 q^{41} - 32 q^{43}+ \cdots - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(8732))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 37 59
8732.2.a.a 8732.a 1.a $1$ $69.725$ \(\Q\) None 8732.2.a.a \(0\) \(-1\) \(2\) \(-3\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}+2q^{5}-3q^{7}-2q^{9}-5q^{11}+\cdots\)
8732.2.a.b 8732.a 1.a $1$ $69.725$ \(\Q\) None 8732.2.a.b \(0\) \(0\) \(-2\) \(-1\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-2q^{5}-q^{7}-3q^{9}-4q^{11}-q^{13}+\cdots\)
8732.2.a.c 8732.a 1.a $41$ $69.725$ None 8732.2.a.c \(0\) \(7\) \(5\) \(13\) $-$ $+$ $+$ $\mathrm{SU}(2)$
8732.2.a.d 8732.a 1.a $42$ $69.725$ None 8732.2.a.d \(0\) \(-9\) \(-3\) \(-24\) $-$ $-$ $+$ $\mathrm{SU}(2)$
8732.2.a.e 8732.a 1.a $44$ $69.725$ None 8732.2.a.e \(0\) \(10\) \(1\) \(25\) $-$ $-$ $-$ $\mathrm{SU}(2)$
8732.2.a.f 8732.a 1.a $45$ $69.725$ None 8732.2.a.f \(0\) \(-7\) \(-3\) \(-14\) $-$ $+$ $-$ $\mathrm{SU}(2)$

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(8732))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(8732)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(37))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(59))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(74))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(118))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(148))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(236))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2183))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(4366))\)\(^{\oplus 2}\)