Properties

Label 8712.2.dd
Level $8712$
Weight $2$
Character orbit 8712.dd
Rep. character $\chi_{8712}(289,\cdot)$
Character field $\Q(\zeta_{55})$
Dimension $6600$
Sturm bound $3168$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 8712 = 2^{3} \cdot 3^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8712.dd (of order \(55\) and degree \(40\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 121 \)
Character field: \(\Q(\zeta_{55})\)
Sturm bound: \(3168\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(8712, [\chi])\).

Total New Old
Modular forms 64000 6600 57400
Cusp forms 62720 6600 56120
Eisenstein series 1280 0 1280

Decomposition of \(S_{2}^{\mathrm{new}}(8712, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(8712, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(8712, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(121, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(242, [\chi])\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(363, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(484, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(726, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(968, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1089, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1452, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(2178, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(2904, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(4356, [\chi])\)\(^{\oplus 2}\)