Properties

Label 87.5.d.c.86.31
Level $87$
Weight $5$
Character 87.86
Analytic conductor $8.993$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [87,5,Mod(86,87)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(87, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 5, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("87.86"); S:= CuspForms(chi, 5); N := Newforms(S);
 
Level: \( N \) \(=\) \( 87 = 3 \cdot 29 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 87.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.99318678829\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 86.31
Character \(\chi\) \(=\) 87.86
Dual form 87.5.d.c.86.32

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+7.23588 q^{2} +(-2.40914 - 8.67157i) q^{3} +36.3580 q^{4} -19.6231i q^{5} +(-17.4322 - 62.7464i) q^{6} -0.405357 q^{7} +147.308 q^{8} +(-69.3921 + 41.7820i) q^{9} -141.990i q^{10} -13.1297 q^{11} +(-87.5913 - 315.280i) q^{12} +2.15048 q^{13} -2.93311 q^{14} +(-170.163 + 47.2747i) q^{15} +484.174 q^{16} +467.262 q^{17} +(-502.113 + 302.330i) q^{18} +421.813i q^{19} -713.455i q^{20} +(0.976560 + 3.51508i) q^{21} -95.0052 q^{22} -399.056i q^{23} +(-354.885 - 1277.39i) q^{24} +239.935 q^{25} +15.5606 q^{26} +(529.490 + 501.080i) q^{27} -14.7379 q^{28} +(-833.249 + 113.916i) q^{29} +(-1231.28 + 342.074i) q^{30} +1442.16i q^{31} +1146.50 q^{32} +(31.6313 + 113.855i) q^{33} +3381.05 q^{34} +7.95435i q^{35} +(-2522.96 + 1519.11i) q^{36} +1634.55i q^{37} +3052.19i q^{38} +(-5.18081 - 18.6480i) q^{39} -2890.63i q^{40} -1270.74 q^{41} +(7.06627 + 25.4347i) q^{42} -1809.33i q^{43} -477.370 q^{44} +(819.891 + 1361.69i) q^{45} -2887.52i q^{46} +1525.76 q^{47} +(-1166.44 - 4198.55i) q^{48} -2400.84 q^{49} +1736.14 q^{50} +(-1125.70 - 4051.89i) q^{51} +78.1871 q^{52} -4753.17i q^{53} +(3831.33 + 3625.75i) q^{54} +257.646i q^{55} -59.7122 q^{56} +(3657.78 - 1016.21i) q^{57} +(-6029.29 + 824.284i) q^{58} +2413.41i q^{59} +(-6186.77 + 1718.81i) q^{60} +5164.78i q^{61} +10435.3i q^{62} +(28.1286 - 16.9366i) q^{63} +549.159 q^{64} -42.1991i q^{65} +(228.881 + 823.844i) q^{66} -1685.57 q^{67} +16988.7 q^{68} +(-3460.44 + 961.380i) q^{69} +57.5567i q^{70} -3640.41i q^{71} +(-10222.0 + 6154.81i) q^{72} -8322.21i q^{73} +11827.4i q^{74} +(-578.036 - 2080.61i) q^{75} +15336.3i q^{76} +5.32223 q^{77} +(-37.4877 - 134.935i) q^{78} +5808.49i q^{79} -9500.99i q^{80} +(3069.53 - 5798.68i) q^{81} -9194.93 q^{82} -2307.90i q^{83} +(35.5057 + 127.801i) q^{84} -9169.12i q^{85} -13092.1i q^{86} +(2995.24 + 6951.13i) q^{87} -1934.11 q^{88} -4008.01 q^{89} +(5932.64 + 9853.00i) q^{90} -0.871712 q^{91} -14508.8i q^{92} +(12505.8 - 3474.36i) q^{93} +11040.2 q^{94} +8277.28 q^{95} +(-2762.08 - 9941.96i) q^{96} -11015.3i q^{97} -17372.2 q^{98} +(911.100 - 548.586i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 188 q^{4} - 36 q^{6} - 84 q^{7} - 452 q^{9} - 224 q^{13} - 52 q^{16} - 4216 q^{22} - 832 q^{24} - 7684 q^{25} - 396 q^{28} + 3384 q^{30} - 3308 q^{33} + 9124 q^{34} - 3680 q^{36} + 19764 q^{42} + 44 q^{45}+ \cdots + 13884 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/87\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(59\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 7.23588 1.80897 0.904485 0.426505i \(-0.140255\pi\)
0.904485 + 0.426505i \(0.140255\pi\)
\(3\) −2.40914 8.67157i −0.267682 0.963507i
\(4\) 36.3580 2.27237
\(5\) 19.6231i 0.784923i −0.919768 0.392462i \(-0.871624\pi\)
0.919768 0.392462i \(-0.128376\pi\)
\(6\) −17.4322 62.7464i −0.484229 1.74296i
\(7\) −0.405357 −0.00827259 −0.00413629 0.999991i \(-0.501317\pi\)
−0.00413629 + 0.999991i \(0.501317\pi\)
\(8\) 147.308 2.30168
\(9\) −69.3921 + 41.7820i −0.856693 + 0.515827i
\(10\) 141.990i 1.41990i
\(11\) −13.1297 −0.108510 −0.0542551 0.998527i \(-0.517278\pi\)
−0.0542551 + 0.998527i \(0.517278\pi\)
\(12\) −87.5913 315.280i −0.608273 2.18945i
\(13\) 2.15048 0.0127247 0.00636237 0.999980i \(-0.497975\pi\)
0.00636237 + 0.999980i \(0.497975\pi\)
\(14\) −2.93311 −0.0149649
\(15\) −170.163 + 47.2747i −0.756279 + 0.210110i
\(16\) 484.174 1.89130
\(17\) 467.262 1.61682 0.808411 0.588618i \(-0.200328\pi\)
0.808411 + 0.588618i \(0.200328\pi\)
\(18\) −502.113 + 302.330i −1.54973 + 0.933116i
\(19\) 421.813i 1.16846i 0.811589 + 0.584229i \(0.198603\pi\)
−0.811589 + 0.584229i \(0.801397\pi\)
\(20\) 713.455i 1.78364i
\(21\) 0.976560 + 3.51508i 0.00221442 + 0.00797070i
\(22\) −95.0052 −0.196292
\(23\) 399.056i 0.754358i −0.926140 0.377179i \(-0.876894\pi\)
0.926140 0.377179i \(-0.123106\pi\)
\(24\) −354.885 1277.39i −0.616119 2.21769i
\(25\) 239.935 0.383895
\(26\) 15.5606 0.0230187
\(27\) 529.490 + 501.080i 0.726324 + 0.687352i
\(28\) −14.7379 −0.0187984
\(29\) −833.249 + 113.916i −0.990784 + 0.135453i
\(30\) −1231.28 + 342.074i −1.36809 + 0.380082i
\(31\) 1442.16i 1.50069i 0.661048 + 0.750343i \(0.270112\pi\)
−0.661048 + 0.750343i \(0.729888\pi\)
\(32\) 1146.50 1.11963
\(33\) 31.6313 + 113.855i 0.0290462 + 0.104550i
\(34\) 3381.05 2.92478
\(35\) 7.95435i 0.00649335i
\(36\) −2522.96 + 1519.11i −1.94673 + 1.17215i
\(37\) 1634.55i 1.19398i 0.802250 + 0.596988i \(0.203636\pi\)
−0.802250 + 0.596988i \(0.796364\pi\)
\(38\) 3052.19i 2.11371i
\(39\) −5.18081 18.6480i −0.00340618 0.0122604i
\(40\) 2890.63i 1.80665i
\(41\) −1270.74 −0.755944 −0.377972 0.925817i \(-0.623378\pi\)
−0.377972 + 0.925817i \(0.623378\pi\)
\(42\) 7.06627 + 25.4347i 0.00400582 + 0.0144188i
\(43\) 1809.33i 0.978547i −0.872130 0.489274i \(-0.837262\pi\)
0.872130 0.489274i \(-0.162738\pi\)
\(44\) −477.370 −0.246576
\(45\) 819.891 + 1361.69i 0.404885 + 0.672438i
\(46\) 2887.52i 1.36461i
\(47\) 1525.76 0.690700 0.345350 0.938474i \(-0.387760\pi\)
0.345350 + 0.938474i \(0.387760\pi\)
\(48\) −1166.44 4198.55i −0.506268 1.82229i
\(49\) −2400.84 −0.999932
\(50\) 1736.14 0.694455
\(51\) −1125.70 4051.89i −0.432794 1.55782i
\(52\) 78.1871 0.0289154
\(53\) 4753.17i 1.69212i −0.533086 0.846061i \(-0.678968\pi\)
0.533086 0.846061i \(-0.321032\pi\)
\(54\) 3831.33 + 3625.75i 1.31390 + 1.24340i
\(55\) 257.646i 0.0851722i
\(56\) −59.7122 −0.0190409
\(57\) 3657.78 1016.21i 1.12582 0.312775i
\(58\) −6029.29 + 824.284i −1.79230 + 0.245031i
\(59\) 2413.41i 0.693309i 0.937993 + 0.346654i \(0.112682\pi\)
−0.937993 + 0.346654i \(0.887318\pi\)
\(60\) −6186.77 + 1718.81i −1.71855 + 0.477448i
\(61\) 5164.78i 1.38801i 0.719970 + 0.694005i \(0.244155\pi\)
−0.719970 + 0.694005i \(0.755845\pi\)
\(62\) 10435.3i 2.71470i
\(63\) 28.1286 16.9366i 0.00708706 0.00426722i
\(64\) 549.159 0.134072
\(65\) 42.1991i 0.00998795i
\(66\) 228.881 + 823.844i 0.0525437 + 0.189128i
\(67\) −1685.57 −0.375489 −0.187745 0.982218i \(-0.560118\pi\)
−0.187745 + 0.982218i \(0.560118\pi\)
\(68\) 16988.7 3.67402
\(69\) −3460.44 + 961.380i −0.726830 + 0.201928i
\(70\) 57.5567i 0.0117463i
\(71\) 3640.41i 0.722160i −0.932535 0.361080i \(-0.882408\pi\)
0.932535 0.361080i \(-0.117592\pi\)
\(72\) −10222.0 + 6154.81i −1.97184 + 1.18727i
\(73\) 8322.21i 1.56168i −0.624730 0.780841i \(-0.714791\pi\)
0.624730 0.780841i \(-0.285209\pi\)
\(74\) 11827.4i 2.15987i
\(75\) −578.036 2080.61i −0.102762 0.369886i
\(76\) 15336.3i 2.65517i
\(77\) 5.32223 0.000897660
\(78\) −37.4877 134.935i −0.00616168 0.0221787i
\(79\) 5808.49i 0.930698i 0.885127 + 0.465349i \(0.154071\pi\)
−0.885127 + 0.465349i \(0.845929\pi\)
\(80\) 9500.99i 1.48453i
\(81\) 3069.53 5798.68i 0.467845 0.883811i
\(82\) −9194.93 −1.36748
\(83\) 2307.90i 0.335012i −0.985871 0.167506i \(-0.946429\pi\)
0.985871 0.167506i \(-0.0535714\pi\)
\(84\) 35.5057 + 127.801i 0.00503199 + 0.0181124i
\(85\) 9169.12i 1.26908i
\(86\) 13092.1i 1.77016i
\(87\) 2995.24 + 6951.13i 0.395725 + 0.918369i
\(88\) −1934.11 −0.249756
\(89\) −4008.01 −0.505998 −0.252999 0.967467i \(-0.581417\pi\)
−0.252999 + 0.967467i \(0.581417\pi\)
\(90\) 5932.64 + 9853.00i 0.732424 + 1.21642i
\(91\) −0.871712 −0.000105267
\(92\) 14508.8i 1.71418i
\(93\) 12505.8 3474.36i 1.44592 0.401707i
\(94\) 11040.2 1.24946
\(95\) 8277.28 0.917150
\(96\) −2762.08 9941.96i −0.299705 1.07877i
\(97\) 11015.3i 1.17072i −0.810775 0.585358i \(-0.800954\pi\)
0.810775 0.585358i \(-0.199046\pi\)
\(98\) −17372.2 −1.80885
\(99\) 911.100 548.586i 0.0929599 0.0559725i
\(100\) 8723.54 0.872354
\(101\) 1511.24 0.148147 0.0740733 0.997253i \(-0.476400\pi\)
0.0740733 + 0.997253i \(0.476400\pi\)
\(102\) −8145.42 29319.0i −0.782912 2.81805i
\(103\) −16214.6 −1.52838 −0.764192 0.644989i \(-0.776862\pi\)
−0.764192 + 0.644989i \(0.776862\pi\)
\(104\) 316.783 0.0292883
\(105\) 68.9767 19.1631i 0.00625639 0.00173815i
\(106\) 34393.4i 3.06100i
\(107\) 3253.67i 0.284188i 0.989853 + 0.142094i \(0.0453836\pi\)
−0.989853 + 0.142094i \(0.954616\pi\)
\(108\) 19251.2 + 18218.2i 1.65048 + 1.56192i
\(109\) 10961.4 0.922602 0.461301 0.887244i \(-0.347383\pi\)
0.461301 + 0.887244i \(0.347383\pi\)
\(110\) 1864.29i 0.154074i
\(111\) 14174.1 3937.86i 1.15040 0.319606i
\(112\) −196.263 −0.0156460
\(113\) 11943.8 0.935373 0.467687 0.883894i \(-0.345088\pi\)
0.467687 + 0.883894i \(0.345088\pi\)
\(114\) 26467.3 7353.15i 2.03657 0.565801i
\(115\) −7830.70 −0.592113
\(116\) −30295.2 + 4141.76i −2.25143 + 0.307800i
\(117\) −149.226 + 89.8514i −0.0109012 + 0.00656377i
\(118\) 17463.1i 1.25417i
\(119\) −189.408 −0.0133753
\(120\) −25066.3 + 6963.93i −1.74072 + 0.483606i
\(121\) −14468.6 −0.988226
\(122\) 37371.8i 2.51087i
\(123\) 3061.39 + 11019.3i 0.202353 + 0.728357i
\(124\) 52434.0i 3.41012i
\(125\) 16972.7i 1.08625i
\(126\) 203.535 122.551i 0.0128203 0.00771928i
\(127\) 14183.9i 0.879404i −0.898144 0.439702i \(-0.855084\pi\)
0.898144 0.439702i \(-0.144916\pi\)
\(128\) −14370.4 −0.877098
\(129\) −15689.8 + 4358.93i −0.942837 + 0.261939i
\(130\) 305.347i 0.0180679i
\(131\) 18372.1 1.07057 0.535287 0.844670i \(-0.320203\pi\)
0.535287 + 0.844670i \(0.320203\pi\)
\(132\) 1150.05 + 4139.55i 0.0660038 + 0.237577i
\(133\) 170.985i 0.00966617i
\(134\) −12196.6 −0.679249
\(135\) 9832.73 10390.2i 0.539519 0.570109i
\(136\) 68831.3 3.72142
\(137\) −16750.4 −0.892452 −0.446226 0.894920i \(-0.647232\pi\)
−0.446226 + 0.894920i \(0.647232\pi\)
\(138\) −25039.3 + 6956.43i −1.31481 + 0.365282i
\(139\) 24202.6 1.25266 0.626330 0.779558i \(-0.284556\pi\)
0.626330 + 0.779558i \(0.284556\pi\)
\(140\) 289.204i 0.0147553i
\(141\) −3675.76 13230.7i −0.184888 0.665494i
\(142\) 26341.6i 1.30637i
\(143\) −28.2352 −0.00138076
\(144\) −33597.9 + 20229.8i −1.62027 + 0.975586i
\(145\) 2235.39 + 16350.9i 0.106320 + 0.777689i
\(146\) 60218.5i 2.82504i
\(147\) 5783.94 + 20819.0i 0.267664 + 0.963441i
\(148\) 59429.0i 2.71316i
\(149\) 14763.7i 0.665000i −0.943103 0.332500i \(-0.892108\pi\)
0.943103 0.332500i \(-0.107892\pi\)
\(150\) −4182.60 15055.0i −0.185893 0.669113i
\(151\) −24424.7 −1.07121 −0.535606 0.844468i \(-0.679917\pi\)
−0.535606 + 0.844468i \(0.679917\pi\)
\(152\) 62136.4i 2.68942i
\(153\) −32424.3 + 19523.1i −1.38512 + 0.834001i
\(154\) 38.5110 0.00162384
\(155\) 28299.6 1.17792
\(156\) −188.364 678.005i −0.00774012 0.0278602i
\(157\) 18163.8i 0.736898i −0.929648 0.368449i \(-0.879889\pi\)
0.929648 0.368449i \(-0.120111\pi\)
\(158\) 42029.5i 1.68361i
\(159\) −41217.4 + 11451.0i −1.63037 + 0.452951i
\(160\) 22497.9i 0.878824i
\(161\) 161.760i 0.00624049i
\(162\) 22210.8 41958.6i 0.846317 1.59879i
\(163\) 40685.3i 1.53131i 0.643254 + 0.765653i \(0.277584\pi\)
−0.643254 + 0.765653i \(0.722416\pi\)
\(164\) −46201.6 −1.71779
\(165\) 2234.19 620.704i 0.0820640 0.0227991i
\(166\) 16699.7i 0.606027i
\(167\) 34775.4i 1.24692i 0.781855 + 0.623460i \(0.214274\pi\)
−0.781855 + 0.623460i \(0.785726\pi\)
\(168\) 143.855 + 517.798i 0.00509690 + 0.0183460i
\(169\) −28556.4 −0.999838
\(170\) 66346.6i 2.29573i
\(171\) −17624.2 29270.5i −0.602722 1.00101i
\(172\) 65783.7i 2.22362i
\(173\) 44699.3i 1.49351i 0.665099 + 0.746755i \(0.268389\pi\)
−0.665099 + 0.746755i \(0.731611\pi\)
\(174\) 21673.2 + 50297.6i 0.715855 + 1.66130i
\(175\) −97.2591 −0.00317581
\(176\) −6357.08 −0.205226
\(177\) 20928.0 5814.23i 0.668008 0.185586i
\(178\) −29001.5 −0.915335
\(179\) 37939.6i 1.18410i 0.805902 + 0.592048i \(0.201681\pi\)
−0.805902 + 0.592048i \(0.798319\pi\)
\(180\) 29809.6 + 49508.2i 0.920049 + 1.52803i
\(181\) 18564.0 0.566648 0.283324 0.959024i \(-0.408563\pi\)
0.283324 + 0.959024i \(0.408563\pi\)
\(182\) −6.30760 −0.000190424
\(183\) 44786.8 12442.7i 1.33736 0.371545i
\(184\) 58784.0i 1.73629i
\(185\) 32075.0 0.937179
\(186\) 90490.3 25140.1i 2.61563 0.726675i
\(187\) −6135.02 −0.175442
\(188\) 55473.4 1.56953
\(189\) −214.633 203.116i −0.00600858 0.00568618i
\(190\) 59893.4 1.65910
\(191\) −46653.9 −1.27886 −0.639428 0.768851i \(-0.720829\pi\)
−0.639428 + 0.768851i \(0.720829\pi\)
\(192\) −1323.00 4762.07i −0.0358887 0.129179i
\(193\) 5202.56i 0.139670i −0.997559 0.0698350i \(-0.977753\pi\)
0.997559 0.0698350i \(-0.0222473\pi\)
\(194\) 79705.1i 2.11779i
\(195\) −365.932 + 101.663i −0.00962346 + 0.00267359i
\(196\) −87289.5 −2.27222
\(197\) 21630.3i 0.557352i −0.960385 0.278676i \(-0.910104\pi\)
0.960385 0.278676i \(-0.0898956\pi\)
\(198\) 6592.61 3969.51i 0.168162 0.101253i
\(199\) 15271.3 0.385630 0.192815 0.981235i \(-0.438238\pi\)
0.192815 + 0.981235i \(0.438238\pi\)
\(200\) 35344.2 0.883606
\(201\) 4060.77 + 14616.5i 0.100512 + 0.361787i
\(202\) 10935.2 0.267993
\(203\) 337.763 46.1767i 0.00819634 0.00112055i
\(204\) −40928.1 147319.i −0.983470 3.53995i
\(205\) 24935.9i 0.593358i
\(206\) −117327. −2.76480
\(207\) 16673.3 + 27691.3i 0.389118 + 0.646253i
\(208\) 1041.21 0.0240664
\(209\) 5538.30i 0.126790i
\(210\) 499.107 138.662i 0.0113176 0.00314426i
\(211\) 42066.3i 0.944865i 0.881367 + 0.472433i \(0.156624\pi\)
−0.881367 + 0.472433i \(0.843376\pi\)
\(212\) 172816.i 3.84513i
\(213\) −31568.1 + 8770.25i −0.695807 + 0.193309i
\(214\) 23543.2i 0.514088i
\(215\) −35504.7 −0.768085
\(216\) 77998.1 + 73812.9i 1.67177 + 1.58207i
\(217\) 584.589i 0.0124146i
\(218\) 79315.6 1.66896
\(219\) −72166.6 + 20049.3i −1.50469 + 0.418034i
\(220\) 9367.48i 0.193543i
\(221\) 1004.84 0.0205736
\(222\) 102562. 28493.9i 2.08105 0.578157i
\(223\) −53606.9 −1.07798 −0.538990 0.842312i \(-0.681194\pi\)
−0.538990 + 0.842312i \(0.681194\pi\)
\(224\) −464.742 −0.00926223
\(225\) −16649.6 + 10024.9i −0.328880 + 0.198024i
\(226\) 86423.8 1.69206
\(227\) 33548.0i 0.651050i 0.945533 + 0.325525i \(0.105541\pi\)
−0.945533 + 0.325525i \(0.894459\pi\)
\(228\) 132990. 36947.2i 2.55828 0.710742i
\(229\) 3684.52i 0.0702602i 0.999383 + 0.0351301i \(0.0111846\pi\)
−0.999383 + 0.0351301i \(0.988815\pi\)
\(230\) −56662.0 −1.07112
\(231\) −12.8220 46.1520i −0.000240287 0.000864902i
\(232\) −122744. + 16780.7i −2.28047 + 0.311771i
\(233\) 93638.9i 1.72482i −0.506208 0.862411i \(-0.668953\pi\)
0.506208 0.862411i \(-0.331047\pi\)
\(234\) −1079.78 + 650.154i −0.0197199 + 0.0118737i
\(235\) 29940.0i 0.542146i
\(236\) 87746.6i 1.57546i
\(237\) 50368.7 13993.4i 0.896735 0.249131i
\(238\) −1370.53 −0.0241955
\(239\) 72162.3i 1.26332i 0.775244 + 0.631662i \(0.217627\pi\)
−0.775244 + 0.631662i \(0.782373\pi\)
\(240\) −82388.4 + 22889.2i −1.43035 + 0.397382i
\(241\) −3326.50 −0.0572735 −0.0286368 0.999590i \(-0.509117\pi\)
−0.0286368 + 0.999590i \(0.509117\pi\)
\(242\) −104693. −1.78767
\(243\) −57678.6 12647.8i −0.976792 0.214192i
\(244\) 187781.i 3.15408i
\(245\) 47111.8i 0.784870i
\(246\) 22151.9 + 79734.5i 0.366050 + 1.31758i
\(247\) 907.102i 0.0148683i
\(248\) 212441.i 3.45411i
\(249\) −20013.1 + 5560.05i −0.322787 + 0.0896768i
\(250\) 122812.i 1.96500i
\(251\) 37131.0 0.589371 0.294685 0.955594i \(-0.404785\pi\)
0.294685 + 0.955594i \(0.404785\pi\)
\(252\) 1022.70 615.781i 0.0161045 0.00969672i
\(253\) 5239.49i 0.0818556i
\(254\) 102633.i 1.59081i
\(255\) −79510.6 + 22089.7i −1.22277 + 0.339710i
\(256\) −112769. −1.72072
\(257\) 30001.3i 0.454227i −0.973868 0.227114i \(-0.927071\pi\)
0.973868 0.227114i \(-0.0729289\pi\)
\(258\) −113529. + 31540.7i −1.70556 + 0.473841i
\(259\) 662.577i 0.00987726i
\(260\) 1534.27i 0.0226963i
\(261\) 53061.3 42719.7i 0.778927 0.627115i
\(262\) 132939. 1.93664
\(263\) 94673.9 1.36873 0.684367 0.729138i \(-0.260079\pi\)
0.684367 + 0.729138i \(0.260079\pi\)
\(264\) 4659.54 + 16771.8i 0.0668552 + 0.240642i
\(265\) −93271.9 −1.32819
\(266\) 1237.23i 0.0174858i
\(267\) 9655.84 + 34755.7i 0.135446 + 0.487532i
\(268\) −61284.0 −0.853252
\(269\) 109966. 1.51969 0.759846 0.650103i \(-0.225274\pi\)
0.759846 + 0.650103i \(0.225274\pi\)
\(270\) 71148.4 75182.5i 0.975973 1.03131i
\(271\) 65762.0i 0.895440i −0.894174 0.447720i \(-0.852236\pi\)
0.894174 0.447720i \(-0.147764\pi\)
\(272\) 226236. 3.05790
\(273\) 2.10007 + 7.55911i 2.81779e−5 + 0.000101425i
\(274\) −121204. −1.61442
\(275\) −3150.28 −0.0416566
\(276\) −125814. + 34953.8i −1.65163 + 0.458856i
\(277\) 103352. 1.34698 0.673488 0.739198i \(-0.264795\pi\)
0.673488 + 0.739198i \(0.264795\pi\)
\(278\) 175127. 2.26602
\(279\) −60256.3 100075.i −0.774095 1.28563i
\(280\) 1171.74i 0.0149456i
\(281\) 51896.8i 0.657246i −0.944461 0.328623i \(-0.893415\pi\)
0.944461 0.328623i \(-0.106585\pi\)
\(282\) −26597.3 95735.7i −0.334457 1.20386i
\(283\) 77430.5 0.966805 0.483403 0.875398i \(-0.339401\pi\)
0.483403 + 0.875398i \(0.339401\pi\)
\(284\) 132358.i 1.64102i
\(285\) −19941.1 71777.0i −0.245505 0.883681i
\(286\) −204.307 −0.00249776
\(287\) 515.104 0.00625361
\(288\) −79558.1 + 47903.1i −0.959179 + 0.577535i
\(289\) 134813. 1.61412
\(290\) 16175.0 + 118313.i 0.192331 + 1.40682i
\(291\) −95519.6 + 26537.3i −1.12799 + 0.313379i
\(292\) 302578.i 3.54872i
\(293\) −25397.6 −0.295840 −0.147920 0.988999i \(-0.547258\pi\)
−0.147920 + 0.988999i \(0.547258\pi\)
\(294\) 41851.9 + 150644.i 0.484196 + 1.74284i
\(295\) 47358.5 0.544194
\(296\) 240782.i 2.74815i
\(297\) −6952.07 6579.04i −0.0788136 0.0745847i
\(298\) 106828.i 1.20297i
\(299\) 858.161i 0.00959901i
\(300\) −21016.2 75646.7i −0.233513 0.840519i
\(301\) 733.426i 0.00809512i
\(302\) −176734. −1.93779
\(303\) −3640.79 13104.8i −0.0396562 0.142740i
\(304\) 204231.i 2.20991i
\(305\) 101349. 1.08948
\(306\) −234618. + 141267.i −2.50564 + 1.50868i
\(307\) 32257.5i 0.342258i −0.985249 0.171129i \(-0.945259\pi\)
0.985249 0.171129i \(-0.0547415\pi\)
\(308\) 193.505 0.00203982
\(309\) 39063.3 + 140606.i 0.409121 + 1.47261i
\(310\) 204773. 2.13083
\(311\) −96109.2 −0.993674 −0.496837 0.867844i \(-0.665505\pi\)
−0.496837 + 0.867844i \(0.665505\pi\)
\(312\) −763.173 2747.00i −0.00783996 0.0282195i
\(313\) 142981. 1.45945 0.729727 0.683739i \(-0.239647\pi\)
0.729727 + 0.683739i \(0.239647\pi\)
\(314\) 131431.i 1.33303i
\(315\) −332.349 551.969i −0.00334944 0.00556280i
\(316\) 211185.i 2.11489i
\(317\) 47312.6 0.470823 0.235412 0.971896i \(-0.424356\pi\)
0.235412 + 0.971896i \(0.424356\pi\)
\(318\) −298244. + 82858.4i −2.94929 + 0.819374i
\(319\) 10940.3 1495.69i 0.107510 0.0146981i
\(320\) 10776.2i 0.105236i
\(321\) 28214.4 7838.54i 0.273817 0.0760721i
\(322\) 1170.47i 0.0112889i
\(323\) 197097.i 1.88919i
\(324\) 111602. 210828.i 1.06312 2.00835i
\(325\) 515.975 0.00488497
\(326\) 294394.i 2.77009i
\(327\) −26407.6 95052.8i −0.246964 0.888933i
\(328\) −187190. −1.73994
\(329\) −618.475 −0.00571387
\(330\) 16166.4 4491.34i 0.148451 0.0412428i
\(331\) 76511.8i 0.698349i −0.937058 0.349174i \(-0.886462\pi\)
0.937058 0.349174i \(-0.113538\pi\)
\(332\) 83910.6i 0.761273i
\(333\) −68294.8 113425.i −0.615885 1.02287i
\(334\) 251630.i 2.25564i
\(335\) 33076.1i 0.294730i
\(336\) 472.825 + 1701.91i 0.00418815 + 0.0150750i
\(337\) 67924.0i 0.598086i −0.954240 0.299043i \(-0.903333\pi\)
0.954240 0.299043i \(-0.0966673\pi\)
\(338\) −206631. −1.80868
\(339\) −28774.2 103571.i −0.250382 0.901239i
\(340\) 333370.i 2.88383i
\(341\) 18935.2i 0.162840i
\(342\) −127527. 211798.i −1.09031 1.81080i
\(343\) 1946.46 0.0165446
\(344\) 266529.i 2.25231i
\(345\) 18865.2 + 67904.4i 0.158498 + 0.570506i
\(346\) 323439.i 2.70172i
\(347\) 154548.i 1.28352i −0.766904 0.641761i \(-0.778204\pi\)
0.766904 0.641761i \(-0.221796\pi\)
\(348\) 108901. + 252729.i 0.899235 + 2.08688i
\(349\) 51287.0 0.421072 0.210536 0.977586i \(-0.432479\pi\)
0.210536 + 0.977586i \(0.432479\pi\)
\(350\) −703.755 −0.00574494
\(351\) 1138.66 + 1077.56i 0.00924229 + 0.00874638i
\(352\) −15053.3 −0.121491
\(353\) 236679.i 1.89937i −0.313203 0.949686i \(-0.601402\pi\)
0.313203 0.949686i \(-0.398598\pi\)
\(354\) 151433. 42071.1i 1.20841 0.335720i
\(355\) −71436.1 −0.566841
\(356\) −145723. −1.14982
\(357\) 456.309 + 1642.46i 0.00358033 + 0.0128872i
\(358\) 274527.i 2.14200i
\(359\) 2889.06 0.0224165 0.0112083 0.999937i \(-0.496432\pi\)
0.0112083 + 0.999937i \(0.496432\pi\)
\(360\) 120776. + 200587.i 0.931917 + 1.54774i
\(361\) −47605.6 −0.365295
\(362\) 134327. 1.02505
\(363\) 34856.9 + 125466.i 0.264530 + 0.952163i
\(364\) −31.6937 −0.000239205
\(365\) −163307. −1.22580
\(366\) 324072. 90033.7i 2.41924 0.672114i
\(367\) 229863.i 1.70662i 0.521402 + 0.853311i \(0.325409\pi\)
−0.521402 + 0.853311i \(0.674591\pi\)
\(368\) 193212.i 1.42672i
\(369\) 88179.4 53094.1i 0.647612 0.389936i
\(370\) 232090. 1.69533
\(371\) 1926.73i 0.0139982i
\(372\) 454685. 126321.i 3.28567 0.912827i
\(373\) −140417. −1.00925 −0.504627 0.863337i \(-0.668370\pi\)
−0.504627 + 0.863337i \(0.668370\pi\)
\(374\) −44392.3 −0.317369
\(375\) −147180. + 40889.5i −1.04661 + 0.290770i
\(376\) 224756. 1.58977
\(377\) −1791.89 + 244.975i −0.0126075 + 0.00172361i
\(378\) −1553.06 1469.72i −0.0108693 0.0102861i
\(379\) 35197.1i 0.245035i 0.992466 + 0.122518i \(0.0390968\pi\)
−0.992466 + 0.122518i \(0.960903\pi\)
\(380\) 300945. 2.08411
\(381\) −122997. + 34171.0i −0.847312 + 0.235400i
\(382\) −337582. −2.31341
\(383\) 48532.0i 0.330850i 0.986222 + 0.165425i \(0.0528995\pi\)
−0.986222 + 0.165425i \(0.947100\pi\)
\(384\) 34620.2 + 124614.i 0.234783 + 0.845090i
\(385\) 104.438i 0.000704594i
\(386\) 37645.1i 0.252659i
\(387\) 75597.6 + 125554.i 0.504761 + 0.838314i
\(388\) 400492.i 2.66030i
\(389\) −120748. −0.797961 −0.398980 0.916959i \(-0.630636\pi\)
−0.398980 + 0.916959i \(0.630636\pi\)
\(390\) −2647.84 + 735.624i −0.0174085 + 0.00483645i
\(391\) 186463.i 1.21966i
\(392\) −353662. −2.30153
\(393\) −44261.0 159315.i −0.286573 1.03151i
\(394\) 156514.i 1.00823i
\(395\) 113980. 0.730527
\(396\) 33125.7 19945.5i 0.211240 0.127190i
\(397\) 197150. 1.25088 0.625440 0.780272i \(-0.284919\pi\)
0.625440 + 0.780272i \(0.284919\pi\)
\(398\) 110502. 0.697594
\(399\) −1482.71 + 411.926i −0.00931343 + 0.00258746i
\(400\) 116170. 0.726063
\(401\) 91127.4i 0.566709i −0.959015 0.283355i \(-0.908553\pi\)
0.959015 0.283355i \(-0.0914473\pi\)
\(402\) 29383.3 + 105764.i 0.181823 + 0.654461i
\(403\) 3101.34i 0.0190958i
\(404\) 54945.7 0.336644
\(405\) −113788. 60233.6i −0.693724 0.367222i
\(406\) 2444.01 334.129i 0.0148269 0.00202704i
\(407\) 21461.2i 0.129558i
\(408\) −165824. 596875.i −0.996156 3.58561i
\(409\) 48919.9i 0.292442i −0.989252 0.146221i \(-0.953289\pi\)
0.989252 0.146221i \(-0.0467110\pi\)
\(410\) 180433.i 1.07337i
\(411\) 40354.1 + 145252.i 0.238893 + 0.859884i
\(412\) −589531. −3.47306
\(413\) 978.291i 0.00573545i
\(414\) 120646. + 200371.i 0.703904 + 1.16905i
\(415\) −45288.1 −0.262959
\(416\) 2465.53 0.0142470
\(417\) −58307.5 209875.i −0.335314 1.20695i
\(418\) 40074.5i 0.229359i
\(419\) 29800.6i 0.169745i 0.996392 + 0.0848724i \(0.0270483\pi\)
−0.996392 + 0.0848724i \(0.972952\pi\)
\(420\) 2507.85 696.732i 0.0142168 0.00394973i
\(421\) 100307.i 0.565937i 0.959129 + 0.282968i \(0.0913192\pi\)
−0.959129 + 0.282968i \(0.908681\pi\)
\(422\) 304387.i 1.70923i
\(423\) −105875. + 63749.1i −0.591717 + 0.356282i
\(424\) 700179.i 3.89473i
\(425\) 112112. 0.620691
\(426\) −228423. + 63460.5i −1.25869 + 0.349691i
\(427\) 2093.58i 0.0114824i
\(428\) 118297.i 0.645782i
\(429\) 68.0226 + 244.844i 0.000369606 + 0.00133038i
\(430\) −256908. −1.38944
\(431\) 142153.i 0.765246i −0.923905 0.382623i \(-0.875021\pi\)
0.923905 0.382623i \(-0.124979\pi\)
\(432\) 256366. + 242610.i 1.37370 + 1.29999i
\(433\) 313179.i 1.67039i 0.549956 + 0.835193i \(0.314644\pi\)
−0.549956 + 0.835193i \(0.685356\pi\)
\(434\) 4230.02i 0.0224576i
\(435\) 136403. 58775.9i 0.720849 0.310614i
\(436\) 398535. 2.09649
\(437\) 168327. 0.881436
\(438\) −522189. + 145075.i −2.72194 + 0.756211i
\(439\) −42216.8 −0.219056 −0.109528 0.993984i \(-0.534934\pi\)
−0.109528 + 0.993984i \(0.534934\pi\)
\(440\) 37953.2i 0.196039i
\(441\) 166599. 100312.i 0.856634 0.515792i
\(442\) 7270.88 0.0372171
\(443\) 82389.3 0.419820 0.209910 0.977721i \(-0.432683\pi\)
0.209910 + 0.977721i \(0.432683\pi\)
\(444\) 515342. 143173.i 2.61415 0.726263i
\(445\) 78649.5i 0.397169i
\(446\) −387893. −1.95003
\(447\) −128024. + 35567.7i −0.640733 + 0.178009i
\(448\) −222.605 −0.00110912
\(449\) −381152. −1.89062 −0.945312 0.326167i \(-0.894243\pi\)
−0.945312 + 0.326167i \(0.894243\pi\)
\(450\) −120474. + 72539.3i −0.594935 + 0.358219i
\(451\) 16684.5 0.0820276
\(452\) 434251. 2.12552
\(453\) 58842.5 + 211801.i 0.286744 + 1.03212i
\(454\) 242749.i 1.17773i
\(455\) 17.1057i 8.26261e-5i
\(456\) 538820. 149695.i 2.59128 0.719910i
\(457\) −70384.3 −0.337011 −0.168505 0.985701i \(-0.553894\pi\)
−0.168505 + 0.985701i \(0.553894\pi\)
\(458\) 26660.7i 0.127099i
\(459\) 247411. + 234135.i 1.17434 + 1.11133i
\(460\) −284708. −1.34550
\(461\) −101625. −0.478187 −0.239094 0.970997i \(-0.576850\pi\)
−0.239094 + 0.970997i \(0.576850\pi\)
\(462\) −92.7783 333.951i −0.000434673 0.00156458i
\(463\) 190931. 0.890665 0.445333 0.895365i \(-0.353085\pi\)
0.445333 + 0.895365i \(0.353085\pi\)
\(464\) −403438. + 55155.3i −1.87387 + 0.256184i
\(465\) −68177.7 245402.i −0.315309 1.13494i
\(466\) 677560.i 3.12015i
\(467\) 319911. 1.46689 0.733443 0.679751i \(-0.237912\pi\)
0.733443 + 0.679751i \(0.237912\pi\)
\(468\) −5425.57 + 3266.81i −0.0247716 + 0.0149153i
\(469\) 683.258 0.00310627
\(470\) 216642.i 0.980726i
\(471\) −157509. + 43759.1i −0.710006 + 0.197254i
\(472\) 355514.i 1.59578i
\(473\) 23756.1i 0.106182i
\(474\) 364462. 101255.i 1.62217 0.450671i
\(475\) 101208.i 0.448566i
\(476\) −6886.48 −0.0303937
\(477\) 198597. + 329833.i 0.872843 + 1.44963i
\(478\) 522158.i 2.28532i
\(479\) −208972. −0.910788 −0.455394 0.890290i \(-0.650502\pi\)
−0.455394 + 0.890290i \(0.650502\pi\)
\(480\) −195092. + 54200.5i −0.846753 + 0.235245i
\(481\) 3515.07i 0.0151930i
\(482\) −24070.2 −0.103606
\(483\) 1402.71 389.702i 0.00601276 0.00167047i
\(484\) −526049. −2.24562
\(485\) −216153. −0.918922
\(486\) −417355. 91518.0i −1.76699 0.387467i
\(487\) −39411.8 −0.166176 −0.0830879 0.996542i \(-0.526478\pi\)
−0.0830879 + 0.996542i \(0.526478\pi\)
\(488\) 760813.i 3.19476i
\(489\) 352805. 98016.4i 1.47542 0.409903i
\(490\) 340895.i 1.41981i
\(491\) 272351. 1.12971 0.564854 0.825191i \(-0.308932\pi\)
0.564854 + 0.825191i \(0.308932\pi\)
\(492\) 111306. + 400640.i 0.459820 + 1.65510i
\(493\) −389345. + 53228.7i −1.60192 + 0.219004i
\(494\) 6563.68i 0.0268964i
\(495\) −10765.0 17878.6i −0.0439341 0.0729664i
\(496\) 698256.i 2.83826i
\(497\) 1475.67i 0.00597413i
\(498\) −144812. + 40231.9i −0.583912 + 0.162223i
\(499\) −292173. −1.17338 −0.586690 0.809812i \(-0.699569\pi\)
−0.586690 + 0.809812i \(0.699569\pi\)
\(500\) 617092.i 2.46837i
\(501\) 301557. 83778.6i 1.20142 0.333778i
\(502\) 268675. 1.06615
\(503\) −116211. −0.459315 −0.229658 0.973271i \(-0.573761\pi\)
−0.229658 + 0.973271i \(0.573761\pi\)
\(504\) 4143.56 2494.89i 0.0163122 0.00982180i
\(505\) 29655.3i 0.116284i
\(506\) 37912.3i 0.148074i
\(507\) 68796.2 + 247628.i 0.267639 + 0.963351i
\(508\) 515698.i 1.99833i
\(509\) 304519.i 1.17538i −0.809086 0.587690i \(-0.800037\pi\)
0.809086 0.587690i \(-0.199963\pi\)
\(510\) −575329. + 159838.i −2.21195 + 0.614526i
\(511\) 3373.46i 0.0129192i
\(512\) −586056. −2.23562
\(513\) −211362. + 223346.i −0.803142 + 0.848680i
\(514\) 217086.i 0.821684i
\(515\) 318181.i 1.19966i
\(516\) −570448. + 158482.i −2.14248 + 0.595224i
\(517\) −20032.8 −0.0749480
\(518\) 4794.33i 0.0178677i
\(519\) 387613. 107687.i 1.43901 0.399786i
\(520\) 6216.25i 0.0229891i
\(521\) 174738.i 0.643742i 0.946783 + 0.321871i \(0.104312\pi\)
−0.946783 + 0.321871i \(0.895688\pi\)
\(522\) 383945. 309115.i 1.40906 1.13443i
\(523\) 34433.4 0.125886 0.0629429 0.998017i \(-0.479951\pi\)
0.0629429 + 0.998017i \(0.479951\pi\)
\(524\) 667973. 2.43274
\(525\) 234.311 + 843.389i 0.000850107 + 0.00305991i
\(526\) 685049. 2.47600
\(527\) 673866.i 2.42634i
\(528\) 15315.1 + 55125.8i 0.0549353 + 0.197737i
\(529\) 120596. 0.430944
\(530\) −674904. −2.40265
\(531\) −100837. 167471.i −0.357627 0.593952i
\(532\) 6216.66i 0.0219651i
\(533\) −2732.71 −0.00961919
\(534\) 69868.5 + 251488.i 0.245019 + 0.881932i
\(535\) 63847.1 0.223066
\(536\) −248298. −0.864258
\(537\) 328996. 91401.8i 1.14089 0.316961i
\(538\) 795704. 2.74908
\(539\) 31522.3 0.108503
\(540\) 357498. 377768.i 1.22599 1.29550i
\(541\) 563577.i 1.92557i −0.270271 0.962784i \(-0.587113\pi\)
0.270271 0.962784i \(-0.412887\pi\)
\(542\) 475846.i 1.61982i
\(543\) −44723.2 160979.i −0.151682 0.545970i
\(544\) 535716. 1.81024
\(545\) 215097.i 0.724172i
\(546\) 15.1959 + 54.6968i 5.09731e−5 + 0.000183475i
\(547\) −308082. −1.02965 −0.514827 0.857294i \(-0.672144\pi\)
−0.514827 + 0.857294i \(0.672144\pi\)
\(548\) −609012. −2.02798
\(549\) −215795. 358395.i −0.715973 1.18910i
\(550\) −22795.0 −0.0753555
\(551\) −48051.4 351476.i −0.158272 1.15769i
\(552\) −509749. + 141619.i −1.67293 + 0.464775i
\(553\) 2354.51i 0.00769928i
\(554\) 747844. 2.43664
\(555\) −77273.0 278140.i −0.250866 0.902979i
\(556\) 879958. 2.84651
\(557\) 252223.i 0.812968i −0.913658 0.406484i \(-0.866755\pi\)
0.913658 0.406484i \(-0.133245\pi\)
\(558\) −436007. 724127.i −1.40031 2.32566i
\(559\) 3890.94i 0.0124518i
\(560\) 3851.29i 0.0122809i
\(561\) 14780.1 + 53200.2i 0.0469626 + 0.169039i
\(562\) 375519.i 1.18894i
\(563\) −100456. −0.316926 −0.158463 0.987365i \(-0.550654\pi\)
−0.158463 + 0.987365i \(0.550654\pi\)
\(564\) −133643. 481041.i −0.420134 1.51225i
\(565\) 234374.i 0.734196i
\(566\) 560278. 1.74892
\(567\) −1244.25 + 2350.53i −0.00387029 + 0.00731140i
\(568\) 536261.i 1.66219i
\(569\) −387102. −1.19564 −0.597820 0.801630i \(-0.703966\pi\)
−0.597820 + 0.801630i \(0.703966\pi\)
\(570\) −144291. 519370.i −0.444110 1.59855i
\(571\) 230611. 0.707305 0.353653 0.935377i \(-0.384939\pi\)
0.353653 + 0.935377i \(0.384939\pi\)
\(572\) −1026.58 −0.00313761
\(573\) 112396. + 404563.i 0.342327 + 1.23219i
\(574\) 3727.23 0.0113126
\(575\) 95747.3i 0.289595i
\(576\) −38107.3 + 22945.0i −0.114859 + 0.0691580i
\(577\) 199189.i 0.598292i −0.954207 0.299146i \(-0.903298\pi\)
0.954207 0.299146i \(-0.0967017\pi\)
\(578\) 975487. 2.91989
\(579\) −45114.4 + 12533.7i −0.134573 + 0.0373871i
\(580\) 81274.1 + 594486.i 0.241600 + 1.76720i
\(581\) 935.523i 0.00277142i
\(582\) −691168. + 192021.i −2.04051 + 0.566894i
\(583\) 62407.9i 0.183613i
\(584\) 1.22593e6i 3.59450i
\(585\) 1763.16 + 2928.28i 0.00515205 + 0.00855660i
\(586\) −183774. −0.535166
\(587\) 268148.i 0.778214i 0.921193 + 0.389107i \(0.127216\pi\)
−0.921193 + 0.389107i \(0.872784\pi\)
\(588\) 210292. + 756937.i 0.608232 + 2.18930i
\(589\) −608322. −1.75349
\(590\) 342680. 0.984431
\(591\) −187568. + 52110.3i −0.537013 + 0.149193i
\(592\) 791408.i 2.25817i
\(593\) 326728.i 0.929131i 0.885539 + 0.464565i \(0.153789\pi\)
−0.885539 + 0.464565i \(0.846211\pi\)
\(594\) −50304.3 47605.2i −0.142571 0.134921i
\(595\) 3716.76i 0.0104986i
\(596\) 536777.i 1.51113i
\(597\) −36790.8 132426.i −0.103226 0.371558i
\(598\) 6209.55i 0.0173643i
\(599\) 393139. 1.09570 0.547852 0.836575i \(-0.315446\pi\)
0.547852 + 0.836575i \(0.315446\pi\)
\(600\) −85149.1 306490.i −0.236525 0.851361i
\(601\) 342216.i 0.947438i 0.880676 + 0.473719i \(0.157089\pi\)
−0.880676 + 0.473719i \(0.842911\pi\)
\(602\) 5306.98i 0.0146438i
\(603\) 116965. 70426.6i 0.321679 0.193688i
\(604\) −888033. −2.43419
\(605\) 283919.i 0.775681i
\(606\) −26344.4 94825.1i −0.0717368 0.258213i
\(607\) 251048.i 0.681365i −0.940178 0.340682i \(-0.889342\pi\)
0.940178 0.340682i \(-0.110658\pi\)
\(608\) 483610.i 1.30824i
\(609\) −1214.14 2817.69i −0.00327367 0.00759729i
\(610\) 733349. 1.97084
\(611\) 3281.11 0.00878897
\(612\) −1.17888e6 + 709821.i −3.14751 + 1.89516i
\(613\) 268670. 0.714987 0.357494 0.933916i \(-0.383631\pi\)
0.357494 + 0.933916i \(0.383631\pi\)
\(614\) 233411.i 0.619134i
\(615\) 216233. 60073.9i 0.571705 0.158831i
\(616\) 784.005 0.00206613
\(617\) −251765. −0.661340 −0.330670 0.943746i \(-0.607275\pi\)
−0.330670 + 0.943746i \(0.607275\pi\)
\(618\) 282657. + 1.01741e6i 0.740088 + 2.66391i
\(619\) 378681.i 0.988308i −0.869374 0.494154i \(-0.835478\pi\)
0.869374 0.494154i \(-0.164522\pi\)
\(620\) 1.02892e6 2.67668
\(621\) 199959. 211296.i 0.518510 0.547909i
\(622\) −695435. −1.79753
\(623\) 1624.67 0.00418591
\(624\) −2508.41 9028.90i −0.00644213 0.0231881i
\(625\) −183097. −0.468729
\(626\) 1.03459e6 2.64011
\(627\) −48025.7 + 13342.5i −0.122163 + 0.0339393i
\(628\) 660398.i 1.67451i
\(629\) 763764.i 1.93045i
\(630\) −2404.83 3993.98i −0.00605904 0.0100629i
\(631\) 156349. 0.392677 0.196339 0.980536i \(-0.437095\pi\)
0.196339 + 0.980536i \(0.437095\pi\)
\(632\) 855636.i 2.14217i
\(633\) 364781. 101344.i 0.910384 0.252923i
\(634\) 342348. 0.851705
\(635\) −278332. −0.690264
\(636\) −1.49858e6 + 416337.i −3.70481 + 1.02927i
\(637\) −5162.95 −0.0127239
\(638\) 79163.0 10822.6i 0.194483 0.0265884i
\(639\) 152104. + 252616.i 0.372510 + 0.618670i
\(640\) 281991.i 0.688454i
\(641\) −313782. −0.763680 −0.381840 0.924228i \(-0.624710\pi\)
−0.381840 + 0.924228i \(0.624710\pi\)
\(642\) 204156. 56718.8i 0.495328 0.137612i
\(643\) −520220. −1.25825 −0.629123 0.777306i \(-0.716586\pi\)
−0.629123 + 0.777306i \(0.716586\pi\)
\(644\) 5881.26i 0.0141807i
\(645\) 85535.7 + 307881.i 0.205602 + 0.740055i
\(646\) 1.42617e6i 3.41749i
\(647\) 71922.9i 0.171814i −0.996303 0.0859070i \(-0.972621\pi\)
0.996303 0.0859070i \(-0.0273788\pi\)
\(648\) 452166. 854191.i 1.07683 2.03425i
\(649\) 31687.4i 0.0752310i
\(650\) 3733.53 0.00883676
\(651\) −5069.30 + 1408.36i −0.0119615 + 0.00332315i
\(652\) 1.47923e6i 3.47970i
\(653\) −154050. −0.361273 −0.180637 0.983550i \(-0.557816\pi\)
−0.180637 + 0.983550i \(0.557816\pi\)
\(654\) −191082. 687790.i −0.446750 1.60805i
\(655\) 360518.i 0.840319i
\(656\) −615260. −1.42972
\(657\) 347718. + 577495.i 0.805558 + 1.33788i
\(658\) −4475.21 −0.0103362
\(659\) 262520. 0.604493 0.302247 0.953230i \(-0.402263\pi\)
0.302247 + 0.953230i \(0.402263\pi\)
\(660\) 81230.7 22567.5i 0.186480 0.0518079i
\(661\) −137844. −0.315490 −0.157745 0.987480i \(-0.550422\pi\)
−0.157745 + 0.987480i \(0.550422\pi\)
\(662\) 553630.i 1.26329i
\(663\) −2420.79 8713.52i −0.00550720 0.0198229i
\(664\) 339972.i 0.771093i
\(665\) −3355.25 −0.00758720
\(666\) −494173. 820730.i −1.11412 1.85034i
\(667\) 45458.9 + 332513.i 0.102180 + 0.747406i
\(668\) 1.26436e6i 2.83347i
\(669\) 129146. + 464856.i 0.288556 + 1.03864i
\(670\) 239335.i 0.533158i
\(671\) 67812.2i 0.150613i
\(672\) 1119.63 + 4030.04i 0.00247933 + 0.00892423i
\(673\) 710569. 1.56883 0.784415 0.620236i \(-0.212963\pi\)
0.784415 + 0.620236i \(0.212963\pi\)
\(674\) 491490.i 1.08192i
\(675\) 127043. + 120226.i 0.278833 + 0.263871i
\(676\) −1.03825e6 −2.27200
\(677\) −648634. −1.41522 −0.707608 0.706605i \(-0.750226\pi\)
−0.707608 + 0.706605i \(0.750226\pi\)
\(678\) −208207. 749429.i −0.452934 1.63031i
\(679\) 4465.11i 0.00968484i
\(680\) 1.35068e6i 2.92103i
\(681\) 290914. 80821.7i 0.627292 0.174274i
\(682\) 137013.i 0.294572i
\(683\) 658451.i 1.41150i −0.708459 0.705752i \(-0.750609\pi\)
0.708459 0.705752i \(-0.249391\pi\)
\(684\) −640780. 1.06422e6i −1.36961 2.27467i
\(685\) 328695.i 0.700506i
\(686\) 14084.3 0.0299287
\(687\) 31950.5 8876.51i 0.0676962 0.0188074i
\(688\) 876033.i 1.85073i
\(689\) 10221.6i 0.0215318i
\(690\) 136507. + 491348.i 0.286718 + 1.03203i
\(691\) 728040. 1.52475 0.762376 0.647134i \(-0.224033\pi\)
0.762376 + 0.647134i \(0.224033\pi\)
\(692\) 1.62517e6i 3.39381i
\(693\) −369.320 + 222.373i −0.000769019 + 0.000463037i
\(694\) 1.11829e6i 2.32185i
\(695\) 474930.i 0.983241i
\(696\) 441223. + 1.02396e6i 0.910834 + 2.11380i
\(697\) −593769. −1.22223
\(698\) 371107. 0.761707
\(699\) −811996. + 225589.i −1.66188 + 0.461704i
\(700\) −3536.14 −0.00721662
\(701\) 310664.i 0.632200i 0.948726 + 0.316100i \(0.102374\pi\)
−0.948726 + 0.316100i \(0.897626\pi\)
\(702\) 8239.20 + 7797.11i 0.0167190 + 0.0158219i
\(703\) −689476. −1.39511
\(704\) −7210.31 −0.0145482
\(705\) −259627. + 72129.7i −0.522362 + 0.145123i
\(706\) 1.71258e6i 3.43591i
\(707\) −612.593 −0.00122556
\(708\) 760900. 211394.i 1.51796 0.421721i
\(709\) 34103.8 0.0678439 0.0339219 0.999424i \(-0.489200\pi\)
0.0339219 + 0.999424i \(0.489200\pi\)
\(710\) −516903. −1.02540
\(711\) −242690. 403063.i −0.480079 0.797323i
\(712\) −590411. −1.16465
\(713\) 575502. 1.13206
\(714\) 3301.80 + 11884.7i 0.00647671 + 0.0233126i
\(715\) 554.062i 0.00108379i
\(716\) 1.37941e6i 2.69071i
\(717\) 625760. 173849.i 1.21722 0.338169i
\(718\) 20904.9 0.0405508
\(719\) 317802.i 0.614750i −0.951588 0.307375i \(-0.900549\pi\)
0.951588 0.307375i \(-0.0994507\pi\)
\(720\) 396970. + 659294.i 0.765760 + 1.27179i
\(721\) 6572.71 0.0126437
\(722\) −344468. −0.660807
\(723\) 8014.01 + 28846.0i 0.0153311 + 0.0551835i
\(724\) 674948. 1.28764
\(725\) −199925. + 27332.5i −0.380357 + 0.0519999i
\(726\) 252220. + 907853.i 0.478527 + 1.72243i
\(727\) 590844.i 1.11790i 0.829200 + 0.558952i \(0.188796\pi\)
−0.829200 + 0.558952i \(0.811204\pi\)
\(728\) −128.410 −0.000242290
\(729\) 29279.3 + 530634.i 0.0550942 + 0.998481i
\(730\) −1.18167e6 −2.21744
\(731\) 845433.i 1.58214i
\(732\) 1.62836e6 452390.i 3.03897 0.844289i
\(733\) 246513.i 0.458808i 0.973331 + 0.229404i \(0.0736777\pi\)
−0.973331 + 0.229404i \(0.926322\pi\)
\(734\) 1.66326e6i 3.08723i
\(735\) 408533. 113499.i 0.756228 0.210095i
\(736\) 457518.i 0.844602i
\(737\) 22131.1 0.0407444
\(738\) 638056. 384183.i 1.17151 0.705383i
\(739\) 434180.i 0.795025i −0.917597 0.397513i \(-0.869874\pi\)
0.917597 0.397513i \(-0.130126\pi\)
\(740\) 1.16618e6 2.12962
\(741\) 7865.99 2185.33i 0.0143257 0.00397998i
\(742\) 13941.6i 0.0253224i
\(743\) −383205. −0.694150 −0.347075 0.937837i \(-0.612825\pi\)
−0.347075 + 0.937837i \(0.612825\pi\)
\(744\) 1.84220e6 511800.i 3.32806 0.924602i
\(745\) −289709. −0.521974
\(746\) −1.01604e6 −1.82571
\(747\) 96428.7 + 160150.i 0.172808 + 0.287003i
\(748\) −223057. −0.398669
\(749\) 1318.90i 0.00235097i
\(750\) −1.06498e6 + 295872.i −1.89329 + 0.525994i
\(751\) 155076.i 0.274957i 0.990505 + 0.137478i \(0.0438998\pi\)
−0.990505 + 0.137478i \(0.956100\pi\)
\(752\) 738731. 1.30632
\(753\) −89453.6 321983.i −0.157764 0.567863i
\(754\) −12965.9 + 1772.61i −0.0228065 + 0.00311796i
\(755\) 479288.i 0.840820i
\(756\) −7803.60 7384.88i −0.0136537 0.0129211i
\(757\) 614348.i 1.07207i 0.844196 + 0.536034i \(0.180078\pi\)
−0.844196 + 0.536034i \(0.819922\pi\)
\(758\) 254682.i 0.443261i
\(759\) 45434.6 12622.7i 0.0788684 0.0219113i
\(760\) 1.21931e6 2.11099
\(761\) 185648.i 0.320569i 0.987071 + 0.160284i \(0.0512412\pi\)
−0.987071 + 0.160284i \(0.948759\pi\)
\(762\) −889989. + 247257.i −1.53276 + 0.425832i
\(763\) −4443.29 −0.00763230
\(764\) −1.69624e6 −2.90604
\(765\) 383104. + 636264.i 0.654627 + 1.08721i
\(766\) 351172.i 0.598497i
\(767\) 5189.99i 0.00882217i
\(768\) 271676. + 977882.i 0.460604 + 1.65792i
\(769\) 529269.i 0.895002i −0.894284 0.447501i \(-0.852314\pi\)
0.894284 0.447501i \(-0.147686\pi\)
\(770\) 755.704i 0.00127459i
\(771\) −260158. + 72277.2i −0.437651 + 0.121588i
\(772\) 189155.i 0.317382i
\(773\) −711620. −1.19094 −0.595469 0.803378i \(-0.703034\pi\)
−0.595469 + 0.803378i \(0.703034\pi\)
\(774\) 547015. + 908490.i 0.913098 + 1.51649i
\(775\) 346024.i 0.576107i
\(776\) 1.62263e6i 2.69462i
\(777\) −5745.58 + 1596.24i −0.00951682 + 0.00264397i
\(778\) −873720. −1.44349
\(779\) 536016.i 0.883289i
\(780\) −13304.5 + 3696.27i −0.0218681 + 0.00607540i
\(781\) 47797.6i 0.0783618i
\(782\) 1.34923e6i 2.20633i
\(783\) −498279. 357207.i −0.812734 0.582634i
\(784\) −1.16242e6 −1.89118
\(785\) −356430. −0.578408
\(786\) −320267. 1.15279e6i −0.518403 1.86596i
\(787\) −1.09692e6 −1.77103 −0.885516 0.464609i \(-0.846195\pi\)
−0.885516 + 0.464609i \(0.846195\pi\)
\(788\) 786433.i 1.26651i
\(789\) −228082. 820971.i −0.366385 1.31878i
\(790\) 824749. 1.32150
\(791\) −4841.49 −0.00773795
\(792\) 134212. 80811.0i 0.213964 0.128831i
\(793\) 11106.8i 0.0176621i
\(794\) 1.42655e6 2.26281
\(795\) 224705. + 808813.i 0.355532 + 1.27972i
\(796\) 555235. 0.876296
\(797\) 832139. 1.31002 0.655012 0.755618i \(-0.272664\pi\)
0.655012 + 0.755618i \(0.272664\pi\)
\(798\) −10728.7 + 2980.65i −0.0168477 + 0.00468064i
\(799\) 712927. 1.11674
\(800\) 275085. 0.429821
\(801\) 278124. 167463.i 0.433485 0.261007i
\(802\) 659387.i 1.02516i
\(803\) 109268.i 0.169458i
\(804\) 147642. + 531428.i 0.228400 + 0.822114i
\(805\) 3174.23 0.00489831
\(806\) 22440.9i 0.0345438i
\(807\) −264924. 953582.i −0.406794 1.46424i
\(808\) 222618. 0.340987
\(809\) 551020. 0.841919 0.420960 0.907079i \(-0.361693\pi\)
0.420960 + 0.907079i \(0.361693\pi\)
\(810\) −823356. 435843.i −1.25493 0.664294i
\(811\) 922048. 1.40188 0.700942 0.713219i \(-0.252763\pi\)
0.700942 + 0.713219i \(0.252763\pi\)
\(812\) 12280.4 1678.89i 0.0186251 0.00254631i
\(813\) −570260. + 158430.i −0.862763 + 0.239693i
\(814\) 155291.i 0.234367i
\(815\) 798370. 1.20196
\(816\) −545034. 1.96182e6i −0.818546 2.94631i
\(817\) 763201. 1.14339
\(818\) 353979.i 0.529018i
\(819\) 60.4899 36.4219i 9.01811e−5 5.42993e-5i
\(820\) 906617.i 1.34833i
\(821\) 542818.i 0.805319i 0.915350 + 0.402660i \(0.131914\pi\)
−0.915350 + 0.402660i \(0.868086\pi\)
\(822\) 291997. + 1.05103e6i 0.432151 + 1.55550i
\(823\) 850262.i 1.25532i 0.778489 + 0.627658i \(0.215986\pi\)
−0.778489 + 0.627658i \(0.784014\pi\)
\(824\) −2.38854e6 −3.51786
\(825\) 7589.45 + 27317.8i 0.0111507 + 0.0401364i
\(826\) 7078.79i 0.0103753i
\(827\) 192231. 0.281069 0.140535 0.990076i \(-0.455118\pi\)
0.140535 + 0.990076i \(0.455118\pi\)
\(828\) 606209. + 1.00680e6i 0.884222 + 1.46853i
\(829\) 545493.i 0.793744i 0.917874 + 0.396872i \(0.129904\pi\)
−0.917874 + 0.396872i \(0.870096\pi\)
\(830\) −327699. −0.475685
\(831\) −248990. 896225.i −0.360561 1.29782i
\(832\) 1180.96 0.00170603
\(833\) −1.12182e6 −1.61671
\(834\) −421906. 1.51863e6i −0.606573 2.18333i
\(835\) 682400. 0.978737
\(836\) 201361.i 0.288113i
\(837\) −722637. + 763610.i −1.03150 + 1.08999i
\(838\) 215633.i 0.307063i
\(839\) 241031. 0.342412 0.171206 0.985235i \(-0.445234\pi\)
0.171206 + 0.985235i \(0.445234\pi\)
\(840\) 10160.8 2822.88i 0.0144002 0.00400068i
\(841\) 681327. 189841.i 0.963305 0.268410i
\(842\) 725811.i 1.02376i
\(843\) −450027. + 125027.i −0.633261 + 0.175933i
\(844\) 1.52945e6i 2.14709i
\(845\) 560364.i 0.784796i
\(846\) −766102. + 461281.i −1.07040 + 0.644503i
\(847\) 5864.95 0.00817518
\(848\) 2.30136e6i 3.20032i
\(849\) −186541. 671443.i −0.258796 0.931524i
\(850\) 811231. 1.12281
\(851\) 652277. 0.900685
\(852\) −1.14775e6 + 318868.i −1.58113 + 0.439271i
\(853\) 659310.i 0.906132i 0.891477 + 0.453066i \(0.149670\pi\)
−0.891477 + 0.453066i \(0.850330\pi\)
\(854\) 15148.9i 0.0207714i
\(855\) −574378. + 345841.i −0.785716 + 0.473091i
\(856\) 479291.i 0.654112i
\(857\) 1.07814e6i 1.46796i −0.679174 0.733978i \(-0.737662\pi\)
0.679174 0.733978i \(-0.262338\pi\)
\(858\) 492.203 + 1771.66i 0.000668606 + 0.00240661i
\(859\) 348516.i 0.472320i −0.971714 0.236160i \(-0.924111\pi\)
0.971714 0.236160i \(-0.0758889\pi\)
\(860\) −1.29088e6 −1.74537
\(861\) −1240.96 4466.76i −0.00167398 0.00602540i
\(862\) 1.02860e6i 1.38431i
\(863\) 289079.i 0.388146i 0.980987 + 0.194073i \(0.0621699\pi\)
−0.980987 + 0.194073i \(0.937830\pi\)
\(864\) 607061. + 574488.i 0.813214 + 0.769580i
\(865\) 877138. 1.17229
\(866\) 2.26613e6i 3.02168i
\(867\) −324782. 1.16904e6i −0.432070 1.55521i
\(868\) 21254.5i 0.0282105i
\(869\) 76263.9i 0.100990i
\(870\) 986994. 425296.i 1.30399 0.561891i
\(871\) −3624.79 −0.00477801
\(872\) 1.61470e6 2.12354
\(873\) 460240. + 764372.i 0.603887 + 1.00294i
\(874\) 1.21799e6 1.59449
\(875\) 6879.99i 0.00898611i
\(876\) −2.62383e6 + 728953.i −3.41922 + 0.949930i
\(877\) −428834. −0.557558 −0.278779 0.960355i \(-0.589930\pi\)
−0.278779 + 0.960355i \(0.589930\pi\)
\(878\) −305475. −0.396266
\(879\) 61186.3 + 220237.i 0.0791911 + 0.285044i
\(880\) 124745.i 0.161087i
\(881\) 675379. 0.870153 0.435077 0.900393i \(-0.356721\pi\)
0.435077 + 0.900393i \(0.356721\pi\)
\(882\) 1.20549e6 725843.i 1.54963 0.933052i
\(883\) 519933. 0.666847 0.333423 0.942777i \(-0.391796\pi\)
0.333423 + 0.942777i \(0.391796\pi\)
\(884\) 36533.8 0.0467510
\(885\) −114093. 410672.i −0.145671 0.524335i
\(886\) 596159. 0.759443
\(887\) 10596.0 0.0134678 0.00673388 0.999977i \(-0.497857\pi\)
0.00673388 + 0.999977i \(0.497857\pi\)
\(888\) 2.08796e6 580078.i 2.64787 0.735631i
\(889\) 5749.54i 0.00727494i
\(890\) 569098.i 0.718468i
\(891\) −40302.1 + 76135.1i −0.0507659 + 0.0959025i
\(892\) −1.94904e6 −2.44957
\(893\) 643584.i 0.807054i
\(894\) −926368. + 257364.i −1.15907 + 0.322012i
\(895\) 744493. 0.929425
\(896\) 5825.12 0.00725587
\(897\) −7441.60 + 2067.43i −0.00924872 + 0.00256948i
\(898\) −2.75797e6 −3.42008
\(899\) −164285. 1.20168e6i −0.203273 1.48686i
\(900\) −605345. + 364487.i −0.747339 + 0.449984i
\(901\) 2.22098e6i 2.73586i
\(902\) 120727. 0.148385
\(903\) 6359.95 1766.92i 0.00779970 0.00216692i
\(904\) 1.75941e6 2.15293
\(905\) 364282.i 0.444775i
\(906\) 425777. + 1.53256e6i 0.518712 + 1.86708i
\(907\) 1.38317e6i 1.68136i −0.541530 0.840681i \(-0.682155\pi\)
0.541530 0.840681i \(-0.317845\pi\)
\(908\) 1.21974e6i 1.47943i
\(909\) −104868. + 63142.8i −0.126916 + 0.0764180i
\(910\) 123.775i 0.000149468i
\(911\) −799842. −0.963757 −0.481879 0.876238i \(-0.660045\pi\)
−0.481879 + 0.876238i \(0.660045\pi\)
\(912\) 1.77100e6 492021.i 2.12927 0.591553i
\(913\) 30302.1i 0.0363523i
\(914\) −509293. −0.609642
\(915\) −244164. 878854.i −0.291634 1.04972i
\(916\) 133962.i 0.159657i
\(917\) −7447.27 −0.00885642
\(918\) 1.79023e6 + 1.69418e6i 2.12434 + 2.01036i
\(919\) −619130. −0.733080 −0.366540 0.930402i \(-0.619458\pi\)
−0.366540 + 0.930402i \(0.619458\pi\)
\(920\) −1.15352e6 −1.36286
\(921\) −279723. + 77712.6i −0.329768 + 0.0916162i
\(922\) −735345. −0.865026
\(923\) 7828.64i 0.00918930i
\(924\) −466.181 1677.99i −0.000546022 0.00196538i
\(925\) 392186.i 0.458362i
\(926\) 1.38155e6 1.61119
\(927\) 1.12517e6 677480.i 1.30936 0.788382i
\(928\) −955321. + 130605.i −1.10931 + 0.151658i
\(929\) 918103.i 1.06380i −0.846807 0.531900i \(-0.821478\pi\)
0.846807 0.531900i \(-0.178522\pi\)
\(930\) −493326. 1.77570e6i −0.570384 2.05307i
\(931\) 1.01270e6i 1.16838i
\(932\) 3.40452e6i 3.91944i
\(933\) 231540. + 833417.i 0.265989 + 0.957413i
\(934\) 2.31484e6 2.65355
\(935\) 120388.i 0.137708i
\(936\) −21982.2 + 13235.8i −0.0250911 + 0.0151077i
\(937\) 564657. 0.643140 0.321570 0.946886i \(-0.395789\pi\)
0.321570 + 0.946886i \(0.395789\pi\)
\(938\) 4943.97 0.00561915
\(939\) −344461. 1.23987e6i −0.390669 1.40619i
\(940\) 1.08856e6i 1.23196i
\(941\) 1.47710e6i 1.66813i 0.551665 + 0.834066i \(0.313993\pi\)
−0.551665 + 0.834066i \(0.686007\pi\)
\(942\) −1.13971e6 + 316635.i −1.28438 + 0.356827i
\(943\) 507096.i 0.570252i
\(944\) 1.16851e6i 1.31126i
\(945\) −3985.76 + 4211.75i −0.00446321 + 0.00471627i
\(946\) 171896.i 0.192081i
\(947\) −1.09520e6 −1.22122 −0.610611 0.791931i \(-0.709076\pi\)
−0.610611 + 0.791931i \(0.709076\pi\)
\(948\) 1.83130e6 508773.i 2.03772 0.566119i
\(949\) 17896.7i 0.0198720i
\(950\) 732327.i 0.811442i
\(951\) −113982. 410274.i −0.126031 0.453642i
\(952\) −27901.2 −0.0307857
\(953\) 1.64631e6i 1.81270i −0.422532 0.906348i \(-0.638859\pi\)
0.422532 0.906348i \(-0.361141\pi\)
\(954\) 1.43702e6 + 2.38663e6i 1.57895 + 2.62234i
\(955\) 915494.i 1.00380i
\(956\) 2.62368e6i 2.87074i
\(957\) −39326.8 91266.5i −0.0429402 0.0996524i
\(958\) −1.51210e6 −1.64759
\(959\) 6789.90 0.00738289
\(960\) −93446.5 + 25961.3i −0.101396 + 0.0281699i
\(961\) −1.15630e6 −1.25206
\(962\) 25434.7i 0.0274837i
\(963\) −135945. 225779.i −0.146592 0.243462i
\(964\) −120945. −0.130147
\(965\) −102090. −0.109630
\(966\) 10149.8 2819.84i 0.0108769 0.00302183i
\(967\) 49950.4i 0.0534178i −0.999643 0.0267089i \(-0.991497\pi\)
0.999643 0.0267089i \(-0.00850271\pi\)
\(968\) −2.13134e6 −2.27458
\(969\) 1.70914e6 474835.i 1.82025 0.505702i
\(970\) −1.56406e6 −1.66230
\(971\) 1.31590e6 1.39567 0.697837 0.716257i \(-0.254146\pi\)
0.697837 + 0.716257i \(0.254146\pi\)
\(972\) −2.09708e6 459849.i −2.21963 0.486724i
\(973\) −9810.70 −0.0103627
\(974\) −285179. −0.300607
\(975\) −1243.05 4474.31i −0.00130762 0.00470670i
\(976\) 2.50065e6i 2.62515i
\(977\) 328035.i 0.343662i −0.985126 0.171831i \(-0.945032\pi\)
0.985126 0.171831i \(-0.0549683\pi\)
\(978\) 2.55285e6 709235.i 2.66900 0.741502i
\(979\) 52624.1 0.0549059
\(980\) 1.71289e6i 1.78352i
\(981\) −760637. + 457990.i −0.790386 + 0.475903i
\(982\) 1.97070e6 2.04361
\(983\) 1.27241e6 1.31680 0.658399 0.752669i \(-0.271234\pi\)
0.658399 + 0.752669i \(0.271234\pi\)
\(984\) 450967. + 1.62323e6i 0.465752 + 1.67645i
\(985\) −424453. −0.437479
\(986\) −2.81726e6 + 385156.i −2.89783 + 0.396172i
\(987\) 1489.99 + 5363.15i 0.00152950 + 0.00550536i
\(988\) 32980.4i 0.0337864i
\(989\) −722025. −0.738175
\(990\) −77893.9 129367.i −0.0794755 0.131994i
\(991\) 1.32060e6 1.34470 0.672349 0.740234i \(-0.265285\pi\)
0.672349 + 0.740234i \(0.265285\pi\)
\(992\) 1.65344e6i 1.68021i
\(993\) −663477. + 184327.i −0.672864 + 0.186935i
\(994\) 10677.7i 0.0108070i
\(995\) 299671.i 0.302690i
\(996\) −727636. + 202152.i −0.733492 + 0.203779i
\(997\) 1.47306e6i 1.48194i −0.671537 0.740971i \(-0.734365\pi\)
0.671537 0.740971i \(-0.265635\pi\)
\(998\) −2.11413e6 −2.12261
\(999\) −819041. + 865480.i −0.820681 + 0.867213i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 87.5.d.c.86.31 yes 32
3.2 odd 2 inner 87.5.d.c.86.1 32
29.28 even 2 inner 87.5.d.c.86.2 yes 32
87.86 odd 2 inner 87.5.d.c.86.32 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
87.5.d.c.86.1 32 3.2 odd 2 inner
87.5.d.c.86.2 yes 32 29.28 even 2 inner
87.5.d.c.86.31 yes 32 1.1 even 1 trivial
87.5.d.c.86.32 yes 32 87.86 odd 2 inner