Properties

Label 864.4.p
Level 864864
Weight 44
Character orbit 864.p
Rep. character χ864(143,)\chi_{864}(143,\cdot)
Character field Q(ζ6)\Q(\zeta_{6})
Dimension 6868
Newform subspaces 22
Sturm bound 576576
Trace bound 11

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 864=2533 864 = 2^{5} \cdot 3^{3}
Weight: k k == 4 4
Character orbit: [χ][\chi] == 864.p (of order 66 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 72 72
Character field: Q(ζ6)\Q(\zeta_{6})
Newform subspaces: 2 2
Sturm bound: 576576
Trace bound: 11
Distinguishing TpT_p: 55

Dimensions

The following table gives the dimensions of various subspaces of M4(864,[χ])M_{4}(864, [\chi]).

Total New Old
Modular forms 912 76 836
Cusp forms 816 68 748
Eisenstein series 96 8 88

Trace form

68q6q11+8q19652q2554q41+2q43+1076q49+3054q59+6q65+2q678q73+3654q83+1380q912q97+O(q100) 68 q - 6 q^{11} + 8 q^{19} - 652 q^{25} - 54 q^{41} + 2 q^{43} + 1076 q^{49} + 3054 q^{59} + 6 q^{65} + 2 q^{67} - 8 q^{73} + 3654 q^{83} + 1380 q^{91} - 2 q^{97}+O(q^{100}) Copy content Toggle raw display

Decomposition of S4new(864,[χ])S_{4}^{\mathrm{new}}(864, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
864.4.p.a 864.p 72.l 44 50.97850.978 Q(2,3)\Q(\sqrt{-2}, \sqrt{-3}) Q(2)\Q(\sqrt{-2}) 72.4.l.a 00 00 00 00 U(1)[D6]\mathrm{U}(1)[D_{6}] q+(952β19β2)q11+(45+)q17+q+(-9-5^{2}\beta _{1}-9\beta _{2})q^{11}+(-45+\cdots)q^{17}+\cdots
864.4.p.b 864.p 72.l 6464 50.97850.978 None 72.4.l.b 00 00 00 00 SU(2)[C6]\mathrm{SU}(2)[C_{6}]

Decomposition of S4old(864,[χ])S_{4}^{\mathrm{old}}(864, [\chi]) into lower level spaces

S4old(864,[χ]) S_{4}^{\mathrm{old}}(864, [\chi]) \simeq S4new(72,[χ])S_{4}^{\mathrm{new}}(72, [\chi])6^{\oplus 6}\oplusS4new(216,[χ])S_{4}^{\mathrm{new}}(216, [\chi])3^{\oplus 3}\oplusS4new(288,[χ])S_{4}^{\mathrm{new}}(288, [\chi])2^{\oplus 2}