Properties

Label 864.4.f.b.431.16
Level $864$
Weight $4$
Character 864.431
Analytic conductor $50.978$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [864,4,Mod(431,864)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(864, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("864.431");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 864 = 2^{5} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 864.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(50.9776502450\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: no (minimal twist has level 216)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 431.16
Character \(\chi\) \(=\) 864.431
Dual form 864.4.f.b.431.15

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+5.34627 q^{5} +31.3735i q^{7} +O(q^{10})\) \(q+5.34627 q^{5} +31.3735i q^{7} +51.3150i q^{11} +4.90945i q^{13} +76.0061i q^{17} -32.6182 q^{19} -96.3546 q^{23} -96.4174 q^{25} +91.4847 q^{29} -229.507i q^{31} +167.731i q^{35} +54.2915i q^{37} -340.220i q^{41} +416.787 q^{43} -593.371 q^{47} -641.297 q^{49} -229.050 q^{53} +274.344i q^{55} -751.749i q^{59} +231.607i q^{61} +26.2473i q^{65} +819.100 q^{67} +20.8051 q^{71} +39.6082 q^{73} -1609.93 q^{77} -739.613i q^{79} +866.479i q^{83} +406.349i q^{85} +777.802i q^{89} -154.027 q^{91} -174.386 q^{95} +490.282 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q+O(q^{10}) \) Copy content Toggle raw display \( 24 q + 48 q^{19} + 600 q^{25} + 432 q^{43} - 816 q^{49} - 1632 q^{67} - 216 q^{73} - 3600 q^{91} + 2280 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/864\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(353\) \(703\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 5.34627 0.478185 0.239092 0.970997i \(-0.423150\pi\)
0.239092 + 0.970997i \(0.423150\pi\)
\(6\) 0 0
\(7\) 31.3735i 1.69401i 0.531585 + 0.847005i \(0.321597\pi\)
−0.531585 + 0.847005i \(0.678403\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 51.3150i 1.40655i 0.710918 + 0.703275i \(0.248280\pi\)
−0.710918 + 0.703275i \(0.751720\pi\)
\(12\) 0 0
\(13\) 4.90945i 0.104741i 0.998628 + 0.0523707i \(0.0166777\pi\)
−0.998628 + 0.0523707i \(0.983322\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 76.0061i 1.08436i 0.840261 + 0.542182i \(0.182402\pi\)
−0.840261 + 0.542182i \(0.817598\pi\)
\(18\) 0 0
\(19\) −32.6182 −0.393849 −0.196924 0.980419i \(-0.563095\pi\)
−0.196924 + 0.980419i \(0.563095\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −96.3546 −0.873536 −0.436768 0.899574i \(-0.643877\pi\)
−0.436768 + 0.899574i \(0.643877\pi\)
\(24\) 0 0
\(25\) −96.4174 −0.771339
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 91.4847 0.585803 0.292901 0.956143i \(-0.405379\pi\)
0.292901 + 0.956143i \(0.405379\pi\)
\(30\) 0 0
\(31\) − 229.507i − 1.32970i −0.746977 0.664850i \(-0.768496\pi\)
0.746977 0.664850i \(-0.231504\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 167.731i 0.810050i
\(36\) 0 0
\(37\) 54.2915i 0.241229i 0.992699 + 0.120615i \(0.0384865\pi\)
−0.992699 + 0.120615i \(0.961513\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) − 340.220i − 1.29594i −0.761666 0.647970i \(-0.775618\pi\)
0.761666 0.647970i \(-0.224382\pi\)
\(42\) 0 0
\(43\) 416.787 1.47813 0.739063 0.673636i \(-0.235268\pi\)
0.739063 + 0.673636i \(0.235268\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −593.371 −1.84153 −0.920766 0.390116i \(-0.872435\pi\)
−0.920766 + 0.390116i \(0.872435\pi\)
\(48\) 0 0
\(49\) −641.297 −1.86967
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −229.050 −0.593631 −0.296816 0.954935i \(-0.595925\pi\)
−0.296816 + 0.954935i \(0.595925\pi\)
\(54\) 0 0
\(55\) 274.344i 0.672591i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) − 751.749i − 1.65880i −0.558653 0.829401i \(-0.688682\pi\)
0.558653 0.829401i \(-0.311318\pi\)
\(60\) 0 0
\(61\) 231.607i 0.486135i 0.970009 + 0.243068i \(0.0781537\pi\)
−0.970009 + 0.243068i \(0.921846\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 26.2473i 0.0500857i
\(66\) 0 0
\(67\) 819.100 1.49357 0.746784 0.665067i \(-0.231597\pi\)
0.746784 + 0.665067i \(0.231597\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 20.8051 0.0347763 0.0173881 0.999849i \(-0.494465\pi\)
0.0173881 + 0.999849i \(0.494465\pi\)
\(72\) 0 0
\(73\) 39.6082 0.0635040 0.0317520 0.999496i \(-0.489891\pi\)
0.0317520 + 0.999496i \(0.489891\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −1609.93 −2.38271
\(78\) 0 0
\(79\) − 739.613i − 1.05333i −0.850073 0.526664i \(-0.823442\pi\)
0.850073 0.526664i \(-0.176558\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 866.479i 1.14588i 0.819596 + 0.572942i \(0.194198\pi\)
−0.819596 + 0.572942i \(0.805802\pi\)
\(84\) 0 0
\(85\) 406.349i 0.518526i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 777.802i 0.926369i 0.886262 + 0.463185i \(0.153293\pi\)
−0.886262 + 0.463185i \(0.846707\pi\)
\(90\) 0 0
\(91\) −154.027 −0.177433
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −174.386 −0.188332
\(96\) 0 0
\(97\) 490.282 0.513202 0.256601 0.966517i \(-0.417397\pi\)
0.256601 + 0.966517i \(0.417397\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −952.128 −0.938023 −0.469011 0.883192i \(-0.655390\pi\)
−0.469011 + 0.883192i \(0.655390\pi\)
\(102\) 0 0
\(103\) 745.313i 0.712989i 0.934297 + 0.356494i \(0.116028\pi\)
−0.934297 + 0.356494i \(0.883972\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 27.3685i − 0.0247272i −0.999924 0.0123636i \(-0.996064\pi\)
0.999924 0.0123636i \(-0.00393556\pi\)
\(108\) 0 0
\(109\) − 847.307i − 0.744562i −0.928120 0.372281i \(-0.878576\pi\)
0.928120 0.372281i \(-0.121424\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 1675.61i 1.39494i 0.716616 + 0.697468i \(0.245690\pi\)
−0.716616 + 0.697468i \(0.754310\pi\)
\(114\) 0 0
\(115\) −515.138 −0.417712
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −2384.58 −1.83692
\(120\) 0 0
\(121\) −1302.23 −0.978384
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −1183.76 −0.847027
\(126\) 0 0
\(127\) − 1339.39i − 0.935842i −0.883770 0.467921i \(-0.845003\pi\)
0.883770 0.467921i \(-0.154997\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 1751.43i 1.16811i 0.811713 + 0.584057i \(0.198535\pi\)
−0.811713 + 0.584057i \(0.801465\pi\)
\(132\) 0 0
\(133\) − 1023.35i − 0.667184i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 189.844i − 0.118390i −0.998246 0.0591951i \(-0.981147\pi\)
0.998246 0.0591951i \(-0.0188534\pi\)
\(138\) 0 0
\(139\) 734.538 0.448221 0.224111 0.974564i \(-0.428052\pi\)
0.224111 + 0.974564i \(0.428052\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −251.929 −0.147324
\(144\) 0 0
\(145\) 489.102 0.280122
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −1386.42 −0.762282 −0.381141 0.924517i \(-0.624469\pi\)
−0.381141 + 0.924517i \(0.624469\pi\)
\(150\) 0 0
\(151\) 2947.94i 1.58874i 0.607433 + 0.794371i \(0.292199\pi\)
−0.607433 + 0.794371i \(0.707801\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) − 1227.01i − 0.635842i
\(156\) 0 0
\(157\) 1809.82i 0.919997i 0.887920 + 0.459999i \(0.152150\pi\)
−0.887920 + 0.459999i \(0.847850\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) − 3022.98i − 1.47978i
\(162\) 0 0
\(163\) −2274.91 −1.09316 −0.546579 0.837407i \(-0.684070\pi\)
−0.546579 + 0.837407i \(0.684070\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −2770.18 −1.28361 −0.641806 0.766867i \(-0.721815\pi\)
−0.641806 + 0.766867i \(0.721815\pi\)
\(168\) 0 0
\(169\) 2172.90 0.989029
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −2498.16 −1.09787 −0.548936 0.835864i \(-0.684967\pi\)
−0.548936 + 0.835864i \(0.684967\pi\)
\(174\) 0 0
\(175\) − 3024.95i − 1.30666i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) − 3199.38i − 1.33594i −0.744190 0.667968i \(-0.767164\pi\)
0.744190 0.667968i \(-0.232836\pi\)
\(180\) 0 0
\(181\) 2004.56i 0.823193i 0.911366 + 0.411597i \(0.135029\pi\)
−0.911366 + 0.411597i \(0.864971\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 290.257i 0.115352i
\(186\) 0 0
\(187\) −3900.25 −1.52521
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −4254.50 −1.61175 −0.805877 0.592084i \(-0.798306\pi\)
−0.805877 + 0.592084i \(0.798306\pi\)
\(192\) 0 0
\(193\) −669.854 −0.249830 −0.124915 0.992167i \(-0.539866\pi\)
−0.124915 + 0.992167i \(0.539866\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 4092.97 1.48026 0.740132 0.672462i \(-0.234763\pi\)
0.740132 + 0.672462i \(0.234763\pi\)
\(198\) 0 0
\(199\) 4026.88i 1.43446i 0.696836 + 0.717231i \(0.254591\pi\)
−0.696836 + 0.717231i \(0.745409\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 2870.20i 0.992356i
\(204\) 0 0
\(205\) − 1818.91i − 0.619698i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) − 1673.80i − 0.553968i
\(210\) 0 0
\(211\) 2003.77 0.653767 0.326884 0.945065i \(-0.394001\pi\)
0.326884 + 0.945065i \(0.394001\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 2228.26 0.706818
\(216\) 0 0
\(217\) 7200.44 2.25252
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −373.148 −0.113578
\(222\) 0 0
\(223\) − 1256.58i − 0.377339i −0.982041 0.188670i \(-0.939582\pi\)
0.982041 0.188670i \(-0.0604175\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 1718.54i 0.502482i 0.967925 + 0.251241i \(0.0808386\pi\)
−0.967925 + 0.251241i \(0.919161\pi\)
\(228\) 0 0
\(229\) − 6743.82i − 1.94605i −0.230710 0.973023i \(-0.574105\pi\)
0.230710 0.973023i \(-0.425895\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 985.152i 0.276993i 0.990363 + 0.138497i \(0.0442270\pi\)
−0.990363 + 0.138497i \(0.955773\pi\)
\(234\) 0 0
\(235\) −3172.32 −0.880592
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −2339.18 −0.633092 −0.316546 0.948577i \(-0.602523\pi\)
−0.316546 + 0.948577i \(0.602523\pi\)
\(240\) 0 0
\(241\) −107.024 −0.0286059 −0.0143029 0.999898i \(-0.504553\pi\)
−0.0143029 + 0.999898i \(0.504553\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −3428.54 −0.894047
\(246\) 0 0
\(247\) − 160.138i − 0.0412523i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 4821.60i 1.21250i 0.795275 + 0.606248i \(0.207326\pi\)
−0.795275 + 0.606248i \(0.792674\pi\)
\(252\) 0 0
\(253\) − 4944.44i − 1.22867i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 2959.11i 0.718226i 0.933294 + 0.359113i \(0.116921\pi\)
−0.933294 + 0.359113i \(0.883079\pi\)
\(258\) 0 0
\(259\) −1703.32 −0.408644
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 3703.31 0.868274 0.434137 0.900847i \(-0.357053\pi\)
0.434137 + 0.900847i \(0.357053\pi\)
\(264\) 0 0
\(265\) −1224.56 −0.283865
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 6140.24 1.39174 0.695868 0.718170i \(-0.255020\pi\)
0.695868 + 0.718170i \(0.255020\pi\)
\(270\) 0 0
\(271\) 1756.25i 0.393669i 0.980437 + 0.196835i \(0.0630662\pi\)
−0.980437 + 0.196835i \(0.936934\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) − 4947.66i − 1.08493i
\(276\) 0 0
\(277\) 7914.36i 1.71671i 0.513058 + 0.858354i \(0.328512\pi\)
−0.513058 + 0.858354i \(0.671488\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 8214.74i 1.74395i 0.489549 + 0.871976i \(0.337162\pi\)
−0.489549 + 0.871976i \(0.662838\pi\)
\(282\) 0 0
\(283\) 6234.35 1.30952 0.654759 0.755838i \(-0.272770\pi\)
0.654759 + 0.755838i \(0.272770\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 10673.9 2.19533
\(288\) 0 0
\(289\) −863.927 −0.175845
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 2144.16 0.427519 0.213759 0.976886i \(-0.431429\pi\)
0.213759 + 0.976886i \(0.431429\pi\)
\(294\) 0 0
\(295\) − 4019.05i − 0.793214i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) − 473.049i − 0.0914953i
\(300\) 0 0
\(301\) 13076.1i 2.50396i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 1238.23i 0.232463i
\(306\) 0 0
\(307\) 458.340 0.0852080 0.0426040 0.999092i \(-0.486435\pi\)
0.0426040 + 0.999092i \(0.486435\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 441.865 0.0805656 0.0402828 0.999188i \(-0.487174\pi\)
0.0402828 + 0.999188i \(0.487174\pi\)
\(312\) 0 0
\(313\) −1758.31 −0.317526 −0.158763 0.987317i \(-0.550751\pi\)
−0.158763 + 0.987317i \(0.550751\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −8501.65 −1.50631 −0.753155 0.657843i \(-0.771469\pi\)
−0.753155 + 0.657843i \(0.771469\pi\)
\(318\) 0 0
\(319\) 4694.54i 0.823961i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) − 2479.18i − 0.427075i
\(324\) 0 0
\(325\) − 473.357i − 0.0807911i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) − 18616.1i − 3.11957i
\(330\) 0 0
\(331\) 7281.52 1.20915 0.604575 0.796549i \(-0.293343\pi\)
0.604575 + 0.796549i \(0.293343\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 4379.13 0.714201
\(336\) 0 0
\(337\) −8529.49 −1.37873 −0.689363 0.724416i \(-0.742110\pi\)
−0.689363 + 0.724416i \(0.742110\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 11777.2 1.87029
\(342\) 0 0
\(343\) − 9358.61i − 1.47323i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 4040.21i − 0.625042i −0.949911 0.312521i \(-0.898826\pi\)
0.949911 0.312521i \(-0.101174\pi\)
\(348\) 0 0
\(349\) − 8536.83i − 1.30936i −0.755907 0.654679i \(-0.772804\pi\)
0.755907 0.654679i \(-0.227196\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 995.881i 0.150157i 0.997178 + 0.0750785i \(0.0239207\pi\)
−0.997178 + 0.0750785i \(0.976079\pi\)
\(354\) 0 0
\(355\) 111.230 0.0166295
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 10756.7 1.58139 0.790695 0.612210i \(-0.209719\pi\)
0.790695 + 0.612210i \(0.209719\pi\)
\(360\) 0 0
\(361\) −5795.05 −0.844883
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 211.756 0.0303666
\(366\) 0 0
\(367\) 5839.99i 0.830640i 0.909675 + 0.415320i \(0.136330\pi\)
−0.909675 + 0.415320i \(0.863670\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) − 7186.11i − 1.00562i
\(372\) 0 0
\(373\) − 4710.48i − 0.653886i −0.945044 0.326943i \(-0.893981\pi\)
0.945044 0.326943i \(-0.106019\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 449.140i 0.0613578i
\(378\) 0 0
\(379\) −115.231 −0.0156174 −0.00780872 0.999970i \(-0.502486\pi\)
−0.00780872 + 0.999970i \(0.502486\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −504.187 −0.0672656 −0.0336328 0.999434i \(-0.510708\pi\)
−0.0336328 + 0.999434i \(0.510708\pi\)
\(384\) 0 0
\(385\) −8607.12 −1.13938
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 1343.26 0.175080 0.0875401 0.996161i \(-0.472099\pi\)
0.0875401 + 0.996161i \(0.472099\pi\)
\(390\) 0 0
\(391\) − 7323.54i − 0.947231i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) − 3954.17i − 0.503686i
\(396\) 0 0
\(397\) − 547.594i − 0.0692266i −0.999401 0.0346133i \(-0.988980\pi\)
0.999401 0.0346133i \(-0.0110200\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 6587.39i 0.820346i 0.912008 + 0.410173i \(0.134532\pi\)
−0.912008 + 0.410173i \(0.865468\pi\)
\(402\) 0 0
\(403\) 1126.75 0.139275
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −2785.97 −0.339301
\(408\) 0 0
\(409\) 8769.93 1.06026 0.530129 0.847917i \(-0.322144\pi\)
0.530129 + 0.847917i \(0.322144\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 23585.0 2.81003
\(414\) 0 0
\(415\) 4632.43i 0.547945i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 3508.29i 0.409048i 0.978862 + 0.204524i \(0.0655646\pi\)
−0.978862 + 0.204524i \(0.934435\pi\)
\(420\) 0 0
\(421\) − 1973.08i − 0.228413i −0.993457 0.114206i \(-0.963567\pi\)
0.993457 0.114206i \(-0.0364325\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) − 7328.31i − 0.836413i
\(426\) 0 0
\(427\) −7266.33 −0.823518
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 12651.4 1.41391 0.706956 0.707258i \(-0.250068\pi\)
0.706956 + 0.707258i \(0.250068\pi\)
\(432\) 0 0
\(433\) −7620.49 −0.845767 −0.422884 0.906184i \(-0.638982\pi\)
−0.422884 + 0.906184i \(0.638982\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 3142.91 0.344041
\(438\) 0 0
\(439\) − 2823.61i − 0.306978i −0.988150 0.153489i \(-0.950949\pi\)
0.988150 0.153489i \(-0.0490510\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 13007.9i 1.39509i 0.716543 + 0.697543i \(0.245723\pi\)
−0.716543 + 0.697543i \(0.754277\pi\)
\(444\) 0 0
\(445\) 4158.34i 0.442975i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) − 12452.1i − 1.30879i −0.756151 0.654397i \(-0.772922\pi\)
0.756151 0.654397i \(-0.227078\pi\)
\(450\) 0 0
\(451\) 17458.4 1.82280
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −823.468 −0.0848457
\(456\) 0 0
\(457\) 12468.0 1.27621 0.638105 0.769949i \(-0.279719\pi\)
0.638105 + 0.769949i \(0.279719\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 7335.04 0.741056 0.370528 0.928821i \(-0.379177\pi\)
0.370528 + 0.928821i \(0.379177\pi\)
\(462\) 0 0
\(463\) 4545.68i 0.456275i 0.973629 + 0.228138i \(0.0732637\pi\)
−0.973629 + 0.228138i \(0.926736\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 11514.8i 1.14099i 0.821303 + 0.570493i \(0.193248\pi\)
−0.821303 + 0.570493i \(0.806752\pi\)
\(468\) 0 0
\(469\) 25698.0i 2.53012i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 21387.4i 2.07906i
\(474\) 0 0
\(475\) 3144.96 0.303791
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −17579.7 −1.67691 −0.838454 0.544973i \(-0.816540\pi\)
−0.838454 + 0.544973i \(0.816540\pi\)
\(480\) 0 0
\(481\) −266.542 −0.0252667
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 2621.18 0.245405
\(486\) 0 0
\(487\) − 1599.21i − 0.148803i −0.997228 0.0744014i \(-0.976295\pi\)
0.997228 0.0744014i \(-0.0237046\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 5007.83i 0.460285i 0.973157 + 0.230143i \(0.0739193\pi\)
−0.973157 + 0.230143i \(0.926081\pi\)
\(492\) 0 0
\(493\) 6953.40i 0.635224i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 652.730i 0.0589113i
\(498\) 0 0
\(499\) −13048.9 −1.17064 −0.585320 0.810802i \(-0.699031\pi\)
−0.585320 + 0.810802i \(0.699031\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 6424.25 0.569470 0.284735 0.958606i \(-0.408094\pi\)
0.284735 + 0.958606i \(0.408094\pi\)
\(504\) 0 0
\(505\) −5090.33 −0.448548
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 2904.65 0.252940 0.126470 0.991970i \(-0.459635\pi\)
0.126470 + 0.991970i \(0.459635\pi\)
\(510\) 0 0
\(511\) 1242.65i 0.107576i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 3984.64i 0.340940i
\(516\) 0 0
\(517\) − 30448.8i − 2.59021i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 2118.60i 0.178153i 0.996025 + 0.0890765i \(0.0283916\pi\)
−0.996025 + 0.0890765i \(0.971608\pi\)
\(522\) 0 0
\(523\) 4864.27 0.406692 0.203346 0.979107i \(-0.434818\pi\)
0.203346 + 0.979107i \(0.434818\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 17443.9 1.44188
\(528\) 0 0
\(529\) −2882.78 −0.236935
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 1670.30 0.135738
\(534\) 0 0
\(535\) − 146.319i − 0.0118242i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) − 32908.1i − 2.62978i
\(540\) 0 0
\(541\) − 19128.9i − 1.52018i −0.649819 0.760089i \(-0.725155\pi\)
0.649819 0.760089i \(-0.274845\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) − 4529.93i − 0.356038i
\(546\) 0 0
\(547\) 6067.06 0.474239 0.237119 0.971480i \(-0.423797\pi\)
0.237119 + 0.971480i \(0.423797\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −2984.07 −0.230718
\(552\) 0 0
\(553\) 23204.3 1.78435
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −8164.41 −0.621072 −0.310536 0.950562i \(-0.600509\pi\)
−0.310536 + 0.950562i \(0.600509\pi\)
\(558\) 0 0
\(559\) 2046.20i 0.154821i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 14439.3i 1.08089i 0.841379 + 0.540446i \(0.181744\pi\)
−0.841379 + 0.540446i \(0.818256\pi\)
\(564\) 0 0
\(565\) 8958.24i 0.667037i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) − 8787.31i − 0.647422i −0.946156 0.323711i \(-0.895069\pi\)
0.946156 0.323711i \(-0.104931\pi\)
\(570\) 0 0
\(571\) −9655.32 −0.707640 −0.353820 0.935313i \(-0.615117\pi\)
−0.353820 + 0.935313i \(0.615117\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 9290.27 0.673793
\(576\) 0 0
\(577\) −12495.1 −0.901523 −0.450761 0.892645i \(-0.648847\pi\)
−0.450761 + 0.892645i \(0.648847\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −27184.5 −1.94114
\(582\) 0 0
\(583\) − 11753.7i − 0.834972i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 19689.8i − 1.38447i −0.721670 0.692237i \(-0.756625\pi\)
0.721670 0.692237i \(-0.243375\pi\)
\(588\) 0 0
\(589\) 7486.11i 0.523701i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) − 3166.24i − 0.219261i −0.993972 0.109631i \(-0.965033\pi\)
0.993972 0.109631i \(-0.0349668\pi\)
\(594\) 0 0
\(595\) −12748.6 −0.878389
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −14634.3 −0.998232 −0.499116 0.866535i \(-0.666342\pi\)
−0.499116 + 0.866535i \(0.666342\pi\)
\(600\) 0 0
\(601\) 11085.4 0.752384 0.376192 0.926542i \(-0.377233\pi\)
0.376192 + 0.926542i \(0.377233\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −6962.06 −0.467848
\(606\) 0 0
\(607\) 13823.4i 0.924338i 0.886792 + 0.462169i \(0.152929\pi\)
−0.886792 + 0.462169i \(0.847071\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) − 2913.12i − 0.192884i
\(612\) 0 0
\(613\) − 7316.01i − 0.482041i −0.970520 0.241020i \(-0.922518\pi\)
0.970520 0.241020i \(-0.0774820\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 4739.21i 0.309228i 0.987975 + 0.154614i \(0.0494133\pi\)
−0.987975 + 0.154614i \(0.950587\pi\)
\(618\) 0 0
\(619\) −13238.6 −0.859620 −0.429810 0.902919i \(-0.641420\pi\)
−0.429810 + 0.902919i \(0.641420\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −24402.4 −1.56928
\(624\) 0 0
\(625\) 5723.50 0.366304
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −4126.49 −0.261580
\(630\) 0 0
\(631\) − 7023.61i − 0.443115i −0.975147 0.221558i \(-0.928886\pi\)
0.975147 0.221558i \(-0.0711141\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) − 7160.75i − 0.447505i
\(636\) 0 0
\(637\) − 3148.42i − 0.195832i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) − 4093.28i − 0.252223i −0.992016 0.126112i \(-0.959750\pi\)
0.992016 0.126112i \(-0.0402497\pi\)
\(642\) 0 0
\(643\) −21554.7 −1.32198 −0.660990 0.750395i \(-0.729863\pi\)
−0.660990 + 0.750395i \(0.729863\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 11733.0 0.712940 0.356470 0.934307i \(-0.383980\pi\)
0.356470 + 0.934307i \(0.383980\pi\)
\(648\) 0 0
\(649\) 38576.0 2.33319
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −3463.08 −0.207536 −0.103768 0.994602i \(-0.533090\pi\)
−0.103768 + 0.994602i \(0.533090\pi\)
\(654\) 0 0
\(655\) 9363.59i 0.558574i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 8365.15i 0.494476i 0.968955 + 0.247238i \(0.0795230\pi\)
−0.968955 + 0.247238i \(0.920477\pi\)
\(660\) 0 0
\(661\) 18883.1i 1.11115i 0.831467 + 0.555574i \(0.187502\pi\)
−0.831467 + 0.555574i \(0.812498\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) − 5471.09i − 0.319037i
\(666\) 0 0
\(667\) −8814.98 −0.511720
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −11884.9 −0.683774
\(672\) 0 0
\(673\) −28007.6 −1.60418 −0.802092 0.597201i \(-0.796280\pi\)
−0.802092 + 0.597201i \(0.796280\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −18077.1 −1.02623 −0.513117 0.858318i \(-0.671509\pi\)
−0.513117 + 0.858318i \(0.671509\pi\)
\(678\) 0 0
\(679\) 15381.9i 0.869370i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 21689.5i 1.21512i 0.794275 + 0.607559i \(0.207851\pi\)
−0.794275 + 0.607559i \(0.792149\pi\)
\(684\) 0 0
\(685\) − 1014.96i − 0.0566123i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) − 1124.51i − 0.0621778i
\(690\) 0 0
\(691\) −8979.75 −0.494364 −0.247182 0.968969i \(-0.579505\pi\)
−0.247182 + 0.968969i \(0.579505\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 3927.04 0.214332
\(696\) 0 0
\(697\) 25858.8 1.40527
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −17863.9 −0.962495 −0.481247 0.876585i \(-0.659816\pi\)
−0.481247 + 0.876585i \(0.659816\pi\)
\(702\) 0 0
\(703\) − 1770.89i − 0.0950078i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 29871.6i − 1.58902i
\(708\) 0 0
\(709\) − 24502.0i − 1.29787i −0.760842 0.648937i \(-0.775214\pi\)
0.760842 0.648937i \(-0.224786\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 22114.1i 1.16154i
\(714\) 0 0
\(715\) −1346.88 −0.0704481
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −27106.8 −1.40600 −0.702999 0.711191i \(-0.748156\pi\)
−0.702999 + 0.711191i \(0.748156\pi\)
\(720\) 0 0
\(721\) −23383.1 −1.20781
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −8820.72 −0.451853
\(726\) 0 0
\(727\) 22287.0i 1.13697i 0.822693 + 0.568486i \(0.192471\pi\)
−0.822693 + 0.568486i \(0.807529\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 31678.4i 1.60283i
\(732\) 0 0
\(733\) 3562.98i 0.179538i 0.995963 + 0.0897691i \(0.0286129\pi\)
−0.995963 + 0.0897691i \(0.971387\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 42032.1i 2.10078i
\(738\) 0 0
\(739\) 11174.7 0.556251 0.278126 0.960545i \(-0.410287\pi\)
0.278126 + 0.960545i \(0.410287\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 599.814 0.0296165 0.0148082 0.999890i \(-0.495286\pi\)
0.0148082 + 0.999890i \(0.495286\pi\)
\(744\) 0 0
\(745\) −7412.17 −0.364511
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 858.646 0.0418882
\(750\) 0 0
\(751\) − 27113.3i − 1.31742i −0.752399 0.658708i \(-0.771103\pi\)
0.752399 0.658708i \(-0.228897\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 15760.5i 0.759712i
\(756\) 0 0
\(757\) 6977.68i 0.335017i 0.985871 + 0.167509i \(0.0535722\pi\)
−0.985871 + 0.167509i \(0.946428\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) − 2313.56i − 0.110206i −0.998481 0.0551028i \(-0.982451\pi\)
0.998481 0.0551028i \(-0.0175487\pi\)
\(762\) 0 0
\(763\) 26583.0 1.26130
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 3690.68 0.173745
\(768\) 0 0
\(769\) −4046.15 −0.189737 −0.0948687 0.995490i \(-0.530243\pi\)
−0.0948687 + 0.995490i \(0.530243\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −1325.18 −0.0616604 −0.0308302 0.999525i \(-0.509815\pi\)
−0.0308302 + 0.999525i \(0.509815\pi\)
\(774\) 0 0
\(775\) 22128.5i 1.02565i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 11097.4i 0.510404i
\(780\) 0 0
\(781\) 1067.61i 0.0489145i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 9675.80i 0.439929i
\(786\) 0 0
\(787\) 29285.3 1.32644 0.663221 0.748424i \(-0.269189\pi\)
0.663221 + 0.748424i \(0.269189\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −52569.6 −2.36303
\(792\) 0 0
\(793\) −1137.06 −0.0509185
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −19355.3 −0.860228 −0.430114 0.902775i \(-0.641527\pi\)
−0.430114 + 0.902775i \(0.641527\pi\)
\(798\) 0 0
\(799\) − 45099.8i − 1.99689i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 2032.50i 0.0893216i
\(804\) 0 0
\(805\) − 16161.7i − 0.707608i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) − 9344.89i − 0.406117i −0.979167 0.203059i \(-0.934912\pi\)
0.979167 0.203059i \(-0.0650882\pi\)
\(810\) 0 0
\(811\) 7747.11 0.335435 0.167717 0.985835i \(-0.446360\pi\)
0.167717 + 0.985835i \(0.446360\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −12162.3 −0.522732
\(816\) 0 0
\(817\) −13594.8 −0.582158
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −18279.5 −0.777049 −0.388525 0.921438i \(-0.627015\pi\)
−0.388525 + 0.921438i \(0.627015\pi\)
\(822\) 0 0
\(823\) 6867.66i 0.290877i 0.989367 + 0.145438i \(0.0464592\pi\)
−0.989367 + 0.145438i \(0.953541\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 28105.6i 1.18177i 0.806754 + 0.590887i \(0.201222\pi\)
−0.806754 + 0.590887i \(0.798778\pi\)
\(828\) 0 0
\(829\) 15815.7i 0.662607i 0.943524 + 0.331304i \(0.107488\pi\)
−0.943524 + 0.331304i \(0.892512\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) − 48742.5i − 2.02740i
\(834\) 0 0
\(835\) −14810.1 −0.613804
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −10718.6 −0.441057 −0.220529 0.975380i \(-0.570778\pi\)
−0.220529 + 0.975380i \(0.570778\pi\)
\(840\) 0 0
\(841\) −16019.5 −0.656835
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 11616.9 0.472939
\(846\) 0 0
\(847\) − 40855.5i − 1.65739i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) − 5231.24i − 0.210722i
\(852\) 0 0
\(853\) 44682.8i 1.79356i 0.442474 + 0.896781i \(0.354101\pi\)
−0.442474 + 0.896781i \(0.645899\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 18607.3i − 0.741671i −0.928698 0.370836i \(-0.879071\pi\)
0.928698 0.370836i \(-0.120929\pi\)
\(858\) 0 0
\(859\) −7890.17 −0.313398 −0.156699 0.987646i \(-0.550085\pi\)
−0.156699 + 0.987646i \(0.550085\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −13106.2 −0.516965 −0.258482 0.966016i \(-0.583222\pi\)
−0.258482 + 0.966016i \(0.583222\pi\)
\(864\) 0 0
\(865\) −13355.9 −0.524986
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 37953.2 1.48156
\(870\) 0 0
\(871\) 4021.33i 0.156438i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) − 37138.6i − 1.43487i
\(876\) 0 0
\(877\) − 13098.1i − 0.504322i −0.967685 0.252161i \(-0.918859\pi\)
0.967685 0.252161i \(-0.0811412\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 3651.26i 0.139630i 0.997560 + 0.0698151i \(0.0222409\pi\)
−0.997560 + 0.0698151i \(0.977759\pi\)
\(882\) 0 0
\(883\) 35395.5 1.34898 0.674492 0.738282i \(-0.264363\pi\)
0.674492 + 0.738282i \(0.264363\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −39080.7 −1.47937 −0.739685 0.672953i \(-0.765026\pi\)
−0.739685 + 0.672953i \(0.765026\pi\)
\(888\) 0 0
\(889\) 42021.4 1.58532
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 19354.7 0.725285
\(894\) 0 0
\(895\) − 17104.7i − 0.638824i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) − 20996.4i − 0.778942i
\(900\) 0 0
\(901\) − 17409.2i − 0.643713i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 10716.9i 0.393638i
\(906\) 0 0
\(907\) 26549.1 0.971939 0.485969 0.873976i \(-0.338467\pi\)
0.485969 + 0.873976i \(0.338467\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 25921.3 0.942713 0.471356 0.881943i \(-0.343765\pi\)
0.471356 + 0.881943i \(0.343765\pi\)
\(912\) 0 0
\(913\) −44463.4 −1.61174
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −54948.4 −1.97880
\(918\) 0 0
\(919\) 28260.7i 1.01440i 0.861828 + 0.507200i \(0.169320\pi\)
−0.861828 + 0.507200i \(0.830680\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 102.142i 0.00364251i
\(924\) 0 0
\(925\) − 5234.65i − 0.186069i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 21212.5i 0.749151i 0.927197 + 0.374575i \(0.122211\pi\)
−0.927197 + 0.374575i \(0.877789\pi\)
\(930\) 0 0
\(931\) 20917.9 0.736367
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −20851.8 −0.729333
\(936\) 0 0
\(937\) 9169.33 0.319689 0.159845 0.987142i \(-0.448901\pi\)
0.159845 + 0.987142i \(0.448901\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 2400.62 0.0831646 0.0415823 0.999135i \(-0.486760\pi\)
0.0415823 + 0.999135i \(0.486760\pi\)
\(942\) 0 0
\(943\) 32781.8i 1.13205i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 31318.5i − 1.07467i −0.843368 0.537336i \(-0.819431\pi\)
0.843368 0.537336i \(-0.180569\pi\)
\(948\) 0 0
\(949\) 194.455i 0.00665150i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) − 48391.0i − 1.64485i −0.568877 0.822423i \(-0.692622\pi\)
0.568877 0.822423i \(-0.307378\pi\)
\(954\) 0 0
\(955\) −22745.7 −0.770716
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 5956.06 0.200554
\(960\) 0 0
\(961\) −22882.5 −0.768101
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −3581.22 −0.119465
\(966\) 0 0
\(967\) 17813.6i 0.592396i 0.955127 + 0.296198i \(0.0957189\pi\)
−0.955127 + 0.296198i \(0.904281\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 5916.67i 0.195546i 0.995209 + 0.0977729i \(0.0311719\pi\)
−0.995209 + 0.0977729i \(0.968828\pi\)
\(972\) 0 0
\(973\) 23045.0i 0.759291i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 5580.76i − 0.182748i −0.995817 0.0913738i \(-0.970874\pi\)
0.995817 0.0913738i \(-0.0291258\pi\)
\(978\) 0 0
\(979\) −39912.9 −1.30298
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 60174.9 1.95247 0.976237 0.216707i \(-0.0695316\pi\)
0.976237 + 0.216707i \(0.0695316\pi\)
\(984\) 0 0
\(985\) 21882.1 0.707839
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −40159.4 −1.29120
\(990\) 0 0
\(991\) 9260.95i 0.296855i 0.988923 + 0.148428i \(0.0474212\pi\)
−0.988923 + 0.148428i \(0.952579\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 21528.8i 0.685938i
\(996\) 0 0
\(997\) − 3944.11i − 0.125287i −0.998036 0.0626435i \(-0.980047\pi\)
0.998036 0.0626435i \(-0.0199531\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 864.4.f.b.431.16 24
3.2 odd 2 inner 864.4.f.b.431.10 24
4.3 odd 2 216.4.f.b.107.24 yes 24
8.3 odd 2 inner 864.4.f.b.431.9 24
8.5 even 2 216.4.f.b.107.2 yes 24
12.11 even 2 216.4.f.b.107.1 24
24.5 odd 2 216.4.f.b.107.23 yes 24
24.11 even 2 inner 864.4.f.b.431.15 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
216.4.f.b.107.1 24 12.11 even 2
216.4.f.b.107.2 yes 24 8.5 even 2
216.4.f.b.107.23 yes 24 24.5 odd 2
216.4.f.b.107.24 yes 24 4.3 odd 2
864.4.f.b.431.9 24 8.3 odd 2 inner
864.4.f.b.431.10 24 3.2 odd 2 inner
864.4.f.b.431.15 24 24.11 even 2 inner
864.4.f.b.431.16 24 1.1 even 1 trivial