Properties

Label 860.2.bj
Level $860$
Weight $2$
Character orbit 860.bj
Rep. character $\chi_{860}(47,\cdot)$
Character field $\Q(\zeta_{28})$
Dimension $1536$
Newform subspaces $1$
Sturm bound $264$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 860 = 2^{2} \cdot 5 \cdot 43 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 860.bj (of order \(28\) and degree \(12\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 860 \)
Character field: \(\Q(\zeta_{28})\)
Newform subspaces: \( 1 \)
Sturm bound: \(264\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(860, [\chi])\).

Total New Old
Modular forms 1632 1632 0
Cusp forms 1536 1536 0
Eisenstein series 96 96 0

Trace form

\( 1536 q - 10 q^{2} - 20 q^{5} - 48 q^{6} - 10 q^{8} - 26 q^{10} - 14 q^{12} - 20 q^{13} - 60 q^{16} - 20 q^{17} + 40 q^{18} - 26 q^{20} - 56 q^{21} - 34 q^{22} - 20 q^{25} - 4 q^{26} - 50 q^{28} + 56 q^{30}+ \cdots - 60 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(860, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
860.2.bj.a 860.bj 860.aj $1536$ $6.867$ None 860.2.bj.a \(-10\) \(0\) \(-20\) \(0\) $\mathrm{SU}(2)[C_{28}]$