Properties

Label 858.2.bo
Level $858$
Weight $2$
Character orbit 858.bo
Rep. character $\chi_{858}(49,\cdot)$
Character field $\Q(\zeta_{30})$
Dimension $224$
Newform subspaces $2$
Sturm bound $336$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 858 = 2 \cdot 3 \cdot 11 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 858.bo (of order \(30\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 143 \)
Character field: \(\Q(\zeta_{30})\)
Newform subspaces: \( 2 \)
Sturm bound: \(336\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(858, [\chi])\).

Total New Old
Modular forms 1408 224 1184
Cusp forms 1280 224 1056
Eisenstein series 128 0 128

Trace form

\( 224 q - 28 q^{4} + 28 q^{9} + 32 q^{10} - 60 q^{11} + 28 q^{13} - 8 q^{14} + 24 q^{15} + 28 q^{16} - 4 q^{17} + 24 q^{19} - 4 q^{22} - 24 q^{23} + 80 q^{25} - 20 q^{26} + 12 q^{29} - 8 q^{30} - 12 q^{33}+ \cdots - 96 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(858, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
858.2.bo.a 858.bo 143.u $112$ $6.851$ None 858.2.bo.a \(0\) \(-14\) \(0\) \(0\) $\mathrm{SU}(2)[C_{30}]$
858.2.bo.b 858.bo 143.u $112$ $6.851$ None 858.2.bo.b \(0\) \(14\) \(0\) \(0\) $\mathrm{SU}(2)[C_{30}]$

Decomposition of \(S_{2}^{\mathrm{old}}(858, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(858, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(143, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(286, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(429, [\chi])\)\(^{\oplus 2}\)