Properties

Label 8568.2.hc
Level $8568$
Weight $2$
Character orbit 8568.hc
Rep. character $\chi_{8568}(253,\cdot)$
Character field $\Q(\zeta_{8})$
Dimension $2160$
Sturm bound $3456$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 8568 = 2^{3} \cdot 3^{2} \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8568.hc (of order \(8\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 136 \)
Character field: \(\Q(\zeta_{8})\)
Sturm bound: \(3456\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(8568, [\chi])\).

Total New Old
Modular forms 6976 2160 4816
Cusp forms 6848 2160 4688
Eisenstein series 128 0 128

Decomposition of \(S_{2}^{\mathrm{new}}(8568, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(8568, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(8568, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(136, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(408, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(952, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1224, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(2856, [\chi])\)\(^{\oplus 2}\)