Defining parameters
| Level: | \( N \) | \(=\) | \( 855 = 3^{2} \cdot 5 \cdot 19 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 855.bu (of order \(9\) and degree \(6\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 171 \) |
| Character field: | \(\Q(\zeta_{9})\) | ||
| Newform subspaces: | \( 2 \) | ||
| Sturm bound: | \(240\) | ||
| Trace bound: | \(8\) | ||
| Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(855, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 744 | 480 | 264 |
| Cusp forms | 696 | 480 | 216 |
| Eisenstein series | 48 | 0 | 48 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(855, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 855.2.bu.a | $240$ | $6.827$ | None | \(0\) | \(-3\) | \(0\) | \(0\) | ||
| 855.2.bu.b | $240$ | $6.827$ | None | \(0\) | \(-3\) | \(0\) | \(0\) | ||
Decomposition of \(S_{2}^{\mathrm{old}}(855, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(855, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(171, [\chi])\)\(^{\oplus 2}\)