Properties

Label 855.1.v
Level $855$
Weight $1$
Character orbit 855.v
Rep. character $\chi_{855}(559,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $4$
Newform subspaces $1$
Sturm bound $120$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 855 = 3^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 855.v (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 95 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 1 \)
Sturm bound: \(120\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(855, [\chi])\).

Total New Old
Modular forms 20 8 12
Cusp forms 4 4 0
Eisenstein series 16 4 12

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 4 0 0 0

Trace form

\( 4 q - 4 q^{4} + 6 q^{10} - 2 q^{16} + 2 q^{19} + 2 q^{25} - 6 q^{34} - 6 q^{40} + 4 q^{49} - 4 q^{61} - 4 q^{64} - 8 q^{76} - 2 q^{85}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(855, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
855.1.v.a 855.v 95.h $4$ $0.427$ \(\Q(\zeta_{12})\) $D_{6}$ \(\Q(\sqrt{-15}) \) None 855.1.v.a \(0\) \(0\) \(0\) \(0\) \(q+(\zeta_{12}+\zeta_{12}^{3})q^{2}+(-1+\zeta_{12}^{2}+\zeta_{12}^{4}+\cdots)q^{4}+\cdots\)