Properties

Label 8512.2.a.ci.1.5
Level $8512$
Weight $2$
Character 8512.1
Self dual yes
Analytic conductor $67.969$
Analytic rank $0$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8512,2,Mod(1,8512)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8512, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8512.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 8512 = 2^{6} \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8512.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(67.9686622005\)
Analytic rank: \(0\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - 3x^{6} - 10x^{5} + 31x^{4} + 12x^{3} - 45x^{2} - 15x + 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 4256)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(1.77715\) of defining polynomial
Character \(\chi\) \(=\) 8512.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.77715 q^{3} +0.595310 q^{5} +1.00000 q^{7} +0.158273 q^{9} +O(q^{10})\) \(q+1.77715 q^{3} +0.595310 q^{5} +1.00000 q^{7} +0.158273 q^{9} +6.33689 q^{11} -1.33561 q^{13} +1.05796 q^{15} +6.14658 q^{17} -1.00000 q^{19} +1.77715 q^{21} -0.680950 q^{23} -4.64561 q^{25} -5.05018 q^{27} -0.562766 q^{29} +7.08767 q^{31} +11.2616 q^{33} +0.595310 q^{35} -3.86658 q^{37} -2.37358 q^{39} +5.17937 q^{41} +6.54753 q^{43} +0.0942213 q^{45} -5.37612 q^{47} +1.00000 q^{49} +10.9234 q^{51} -11.0005 q^{53} +3.77241 q^{55} -1.77715 q^{57} +6.32544 q^{59} +11.2504 q^{61} +0.158273 q^{63} -0.795101 q^{65} +10.3344 q^{67} -1.21015 q^{69} +12.8814 q^{71} -4.12066 q^{73} -8.25595 q^{75} +6.33689 q^{77} +6.21320 q^{79} -9.44977 q^{81} +3.14945 q^{83} +3.65912 q^{85} -1.00012 q^{87} -1.33389 q^{89} -1.33561 q^{91} +12.5959 q^{93} -0.595310 q^{95} -2.06937 q^{97} +1.00296 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q + 3 q^{3} + 5 q^{5} + 7 q^{7} + 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 7 q + 3 q^{3} + 5 q^{5} + 7 q^{7} + 8 q^{9} + 3 q^{11} + 16 q^{13} - 8 q^{15} + 8 q^{17} - 7 q^{19} + 3 q^{21} - 10 q^{23} + 8 q^{25} + 6 q^{27} + 11 q^{29} - 14 q^{31} + 3 q^{33} + 5 q^{35} + 13 q^{37} + 6 q^{39} + 11 q^{41} + 11 q^{43} - 4 q^{45} - 7 q^{47} + 7 q^{49} + 24 q^{51} + 9 q^{53} + 8 q^{55} - 3 q^{57} + 23 q^{59} + 23 q^{61} + 8 q^{63} + 40 q^{65} + 16 q^{67} + 10 q^{69} - 3 q^{71} + 4 q^{73} + 48 q^{75} + 3 q^{77} - 29 q^{79} + 23 q^{81} + 6 q^{83} + 6 q^{85} + 6 q^{87} + 15 q^{89} + 16 q^{91} - 42 q^{93} - 5 q^{95} - 13 q^{97} + 47 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.77715 1.02604 0.513020 0.858377i \(-0.328527\pi\)
0.513020 + 0.858377i \(0.328527\pi\)
\(4\) 0 0
\(5\) 0.595310 0.266231 0.133115 0.991101i \(-0.457502\pi\)
0.133115 + 0.991101i \(0.457502\pi\)
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) 0 0
\(9\) 0.158273 0.0527575
\(10\) 0 0
\(11\) 6.33689 1.91064 0.955322 0.295569i \(-0.0955091\pi\)
0.955322 + 0.295569i \(0.0955091\pi\)
\(12\) 0 0
\(13\) −1.33561 −0.370431 −0.185215 0.982698i \(-0.559298\pi\)
−0.185215 + 0.982698i \(0.559298\pi\)
\(14\) 0 0
\(15\) 1.05796 0.273163
\(16\) 0 0
\(17\) 6.14658 1.49077 0.745383 0.666637i \(-0.232267\pi\)
0.745383 + 0.666637i \(0.232267\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) 1.77715 0.387807
\(22\) 0 0
\(23\) −0.680950 −0.141988 −0.0709940 0.997477i \(-0.522617\pi\)
−0.0709940 + 0.997477i \(0.522617\pi\)
\(24\) 0 0
\(25\) −4.64561 −0.929121
\(26\) 0 0
\(27\) −5.05018 −0.971908
\(28\) 0 0
\(29\) −0.562766 −0.104503 −0.0522515 0.998634i \(-0.516640\pi\)
−0.0522515 + 0.998634i \(0.516640\pi\)
\(30\) 0 0
\(31\) 7.08767 1.27298 0.636491 0.771284i \(-0.280385\pi\)
0.636491 + 0.771284i \(0.280385\pi\)
\(32\) 0 0
\(33\) 11.2616 1.96040
\(34\) 0 0
\(35\) 0.595310 0.100626
\(36\) 0 0
\(37\) −3.86658 −0.635661 −0.317831 0.948148i \(-0.602954\pi\)
−0.317831 + 0.948148i \(0.602954\pi\)
\(38\) 0 0
\(39\) −2.37358 −0.380077
\(40\) 0 0
\(41\) 5.17937 0.808882 0.404441 0.914564i \(-0.367466\pi\)
0.404441 + 0.914564i \(0.367466\pi\)
\(42\) 0 0
\(43\) 6.54753 0.998488 0.499244 0.866461i \(-0.333611\pi\)
0.499244 + 0.866461i \(0.333611\pi\)
\(44\) 0 0
\(45\) 0.0942213 0.0140457
\(46\) 0 0
\(47\) −5.37612 −0.784188 −0.392094 0.919925i \(-0.628249\pi\)
−0.392094 + 0.919925i \(0.628249\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 10.9234 1.52958
\(52\) 0 0
\(53\) −11.0005 −1.51104 −0.755519 0.655127i \(-0.772615\pi\)
−0.755519 + 0.655127i \(0.772615\pi\)
\(54\) 0 0
\(55\) 3.77241 0.508672
\(56\) 0 0
\(57\) −1.77715 −0.235390
\(58\) 0 0
\(59\) 6.32544 0.823502 0.411751 0.911296i \(-0.364917\pi\)
0.411751 + 0.911296i \(0.364917\pi\)
\(60\) 0 0
\(61\) 11.2504 1.44046 0.720231 0.693735i \(-0.244036\pi\)
0.720231 + 0.693735i \(0.244036\pi\)
\(62\) 0 0
\(63\) 0.158273 0.0199405
\(64\) 0 0
\(65\) −0.795101 −0.0986201
\(66\) 0 0
\(67\) 10.3344 1.26255 0.631275 0.775559i \(-0.282532\pi\)
0.631275 + 0.775559i \(0.282532\pi\)
\(68\) 0 0
\(69\) −1.21015 −0.145685
\(70\) 0 0
\(71\) 12.8814 1.52874 0.764369 0.644779i \(-0.223051\pi\)
0.764369 + 0.644779i \(0.223051\pi\)
\(72\) 0 0
\(73\) −4.12066 −0.482286 −0.241143 0.970490i \(-0.577522\pi\)
−0.241143 + 0.970490i \(0.577522\pi\)
\(74\) 0 0
\(75\) −8.25595 −0.953315
\(76\) 0 0
\(77\) 6.33689 0.722155
\(78\) 0 0
\(79\) 6.21320 0.699040 0.349520 0.936929i \(-0.386345\pi\)
0.349520 + 0.936929i \(0.386345\pi\)
\(80\) 0 0
\(81\) −9.44977 −1.04997
\(82\) 0 0
\(83\) 3.14945 0.345697 0.172849 0.984948i \(-0.444703\pi\)
0.172849 + 0.984948i \(0.444703\pi\)
\(84\) 0 0
\(85\) 3.65912 0.396888
\(86\) 0 0
\(87\) −1.00012 −0.107224
\(88\) 0 0
\(89\) −1.33389 −0.141392 −0.0706958 0.997498i \(-0.522522\pi\)
−0.0706958 + 0.997498i \(0.522522\pi\)
\(90\) 0 0
\(91\) −1.33561 −0.140010
\(92\) 0 0
\(93\) 12.5959 1.30613
\(94\) 0 0
\(95\) −0.595310 −0.0610775
\(96\) 0 0
\(97\) −2.06937 −0.210112 −0.105056 0.994466i \(-0.533502\pi\)
−0.105056 + 0.994466i \(0.533502\pi\)
\(98\) 0 0
\(99\) 1.00296 0.100801
\(100\) 0 0
\(101\) −16.8695 −1.67857 −0.839287 0.543689i \(-0.817027\pi\)
−0.839287 + 0.543689i \(0.817027\pi\)
\(102\) 0 0
\(103\) −11.5712 −1.14015 −0.570073 0.821594i \(-0.693085\pi\)
−0.570073 + 0.821594i \(0.693085\pi\)
\(104\) 0 0
\(105\) 1.05796 0.103246
\(106\) 0 0
\(107\) 7.41689 0.717018 0.358509 0.933526i \(-0.383285\pi\)
0.358509 + 0.933526i \(0.383285\pi\)
\(108\) 0 0
\(109\) 14.5007 1.38892 0.694460 0.719531i \(-0.255643\pi\)
0.694460 + 0.719531i \(0.255643\pi\)
\(110\) 0 0
\(111\) −6.87150 −0.652214
\(112\) 0 0
\(113\) 7.48371 0.704008 0.352004 0.935998i \(-0.385500\pi\)
0.352004 + 0.935998i \(0.385500\pi\)
\(114\) 0 0
\(115\) −0.405377 −0.0378016
\(116\) 0 0
\(117\) −0.211390 −0.0195430
\(118\) 0 0
\(119\) 6.14658 0.563456
\(120\) 0 0
\(121\) 29.1561 2.65056
\(122\) 0 0
\(123\) 9.20454 0.829945
\(124\) 0 0
\(125\) −5.74213 −0.513591
\(126\) 0 0
\(127\) −4.90057 −0.434855 −0.217428 0.976076i \(-0.569767\pi\)
−0.217428 + 0.976076i \(0.569767\pi\)
\(128\) 0 0
\(129\) 11.6360 1.02449
\(130\) 0 0
\(131\) 10.4275 0.911052 0.455526 0.890222i \(-0.349451\pi\)
0.455526 + 0.890222i \(0.349451\pi\)
\(132\) 0 0
\(133\) −1.00000 −0.0867110
\(134\) 0 0
\(135\) −3.00643 −0.258752
\(136\) 0 0
\(137\) −6.65890 −0.568908 −0.284454 0.958690i \(-0.591812\pi\)
−0.284454 + 0.958690i \(0.591812\pi\)
\(138\) 0 0
\(139\) −19.6735 −1.66869 −0.834344 0.551245i \(-0.814153\pi\)
−0.834344 + 0.551245i \(0.814153\pi\)
\(140\) 0 0
\(141\) −9.55420 −0.804608
\(142\) 0 0
\(143\) −8.46359 −0.707761
\(144\) 0 0
\(145\) −0.335020 −0.0278219
\(146\) 0 0
\(147\) 1.77715 0.146577
\(148\) 0 0
\(149\) −8.20059 −0.671819 −0.335909 0.941894i \(-0.609044\pi\)
−0.335909 + 0.941894i \(0.609044\pi\)
\(150\) 0 0
\(151\) −19.3023 −1.57080 −0.785400 0.618989i \(-0.787543\pi\)
−0.785400 + 0.618989i \(0.787543\pi\)
\(152\) 0 0
\(153\) 0.972836 0.0786491
\(154\) 0 0
\(155\) 4.21936 0.338907
\(156\) 0 0
\(157\) 10.9159 0.871185 0.435592 0.900144i \(-0.356539\pi\)
0.435592 + 0.900144i \(0.356539\pi\)
\(158\) 0 0
\(159\) −19.5496 −1.55039
\(160\) 0 0
\(161\) −0.680950 −0.0536664
\(162\) 0 0
\(163\) 25.0706 1.96368 0.981839 0.189718i \(-0.0607572\pi\)
0.981839 + 0.189718i \(0.0607572\pi\)
\(164\) 0 0
\(165\) 6.70415 0.521918
\(166\) 0 0
\(167\) −9.00507 −0.696833 −0.348416 0.937340i \(-0.613280\pi\)
−0.348416 + 0.937340i \(0.613280\pi\)
\(168\) 0 0
\(169\) −11.2162 −0.862781
\(170\) 0 0
\(171\) −0.158273 −0.0121034
\(172\) 0 0
\(173\) −2.53305 −0.192584 −0.0962921 0.995353i \(-0.530698\pi\)
−0.0962921 + 0.995353i \(0.530698\pi\)
\(174\) 0 0
\(175\) −4.64561 −0.351175
\(176\) 0 0
\(177\) 11.2413 0.844946
\(178\) 0 0
\(179\) −22.9777 −1.71743 −0.858717 0.512450i \(-0.828738\pi\)
−0.858717 + 0.512450i \(0.828738\pi\)
\(180\) 0 0
\(181\) 11.2375 0.835275 0.417638 0.908614i \(-0.362858\pi\)
0.417638 + 0.908614i \(0.362858\pi\)
\(182\) 0 0
\(183\) 19.9936 1.47797
\(184\) 0 0
\(185\) −2.30181 −0.169233
\(186\) 0 0
\(187\) 38.9502 2.84832
\(188\) 0 0
\(189\) −5.05018 −0.367347
\(190\) 0 0
\(191\) −3.80480 −0.275306 −0.137653 0.990481i \(-0.543956\pi\)
−0.137653 + 0.990481i \(0.543956\pi\)
\(192\) 0 0
\(193\) 5.61590 0.404241 0.202121 0.979361i \(-0.435217\pi\)
0.202121 + 0.979361i \(0.435217\pi\)
\(194\) 0 0
\(195\) −1.41302 −0.101188
\(196\) 0 0
\(197\) −1.91133 −0.136176 −0.0680882 0.997679i \(-0.521690\pi\)
−0.0680882 + 0.997679i \(0.521690\pi\)
\(198\) 0 0
\(199\) −23.5608 −1.67018 −0.835092 0.550110i \(-0.814586\pi\)
−0.835092 + 0.550110i \(0.814586\pi\)
\(200\) 0 0
\(201\) 18.3658 1.29543
\(202\) 0 0
\(203\) −0.562766 −0.0394984
\(204\) 0 0
\(205\) 3.08333 0.215349
\(206\) 0 0
\(207\) −0.107776 −0.00749094
\(208\) 0 0
\(209\) −6.33689 −0.438332
\(210\) 0 0
\(211\) −17.6602 −1.21578 −0.607889 0.794022i \(-0.707984\pi\)
−0.607889 + 0.794022i \(0.707984\pi\)
\(212\) 0 0
\(213\) 22.8922 1.56855
\(214\) 0 0
\(215\) 3.89781 0.265828
\(216\) 0 0
\(217\) 7.08767 0.481142
\(218\) 0 0
\(219\) −7.32304 −0.494845
\(220\) 0 0
\(221\) −8.20942 −0.552226
\(222\) 0 0
\(223\) 13.3804 0.896018 0.448009 0.894029i \(-0.352133\pi\)
0.448009 + 0.894029i \(0.352133\pi\)
\(224\) 0 0
\(225\) −0.735272 −0.0490181
\(226\) 0 0
\(227\) 26.4815 1.75764 0.878819 0.477155i \(-0.158332\pi\)
0.878819 + 0.477155i \(0.158332\pi\)
\(228\) 0 0
\(229\) 9.11208 0.602144 0.301072 0.953601i \(-0.402656\pi\)
0.301072 + 0.953601i \(0.402656\pi\)
\(230\) 0 0
\(231\) 11.2616 0.740960
\(232\) 0 0
\(233\) 10.0041 0.655394 0.327697 0.944783i \(-0.393728\pi\)
0.327697 + 0.944783i \(0.393728\pi\)
\(234\) 0 0
\(235\) −3.20046 −0.208775
\(236\) 0 0
\(237\) 11.0418 0.717243
\(238\) 0 0
\(239\) −19.6648 −1.27201 −0.636005 0.771685i \(-0.719414\pi\)
−0.636005 + 0.771685i \(0.719414\pi\)
\(240\) 0 0
\(241\) −19.4622 −1.25367 −0.626836 0.779152i \(-0.715650\pi\)
−0.626836 + 0.779152i \(0.715650\pi\)
\(242\) 0 0
\(243\) −1.64313 −0.105407
\(244\) 0 0
\(245\) 0.595310 0.0380330
\(246\) 0 0
\(247\) 1.33561 0.0849827
\(248\) 0 0
\(249\) 5.59706 0.354699
\(250\) 0 0
\(251\) −7.85031 −0.495507 −0.247754 0.968823i \(-0.579692\pi\)
−0.247754 + 0.968823i \(0.579692\pi\)
\(252\) 0 0
\(253\) −4.31511 −0.271288
\(254\) 0 0
\(255\) 6.50282 0.407223
\(256\) 0 0
\(257\) −2.70348 −0.168638 −0.0843192 0.996439i \(-0.526872\pi\)
−0.0843192 + 0.996439i \(0.526872\pi\)
\(258\) 0 0
\(259\) −3.86658 −0.240257
\(260\) 0 0
\(261\) −0.0890704 −0.00551332
\(262\) 0 0
\(263\) −6.19081 −0.381742 −0.190871 0.981615i \(-0.561131\pi\)
−0.190871 + 0.981615i \(0.561131\pi\)
\(264\) 0 0
\(265\) −6.54872 −0.402285
\(266\) 0 0
\(267\) −2.37052 −0.145073
\(268\) 0 0
\(269\) 8.83762 0.538839 0.269420 0.963023i \(-0.413168\pi\)
0.269420 + 0.963023i \(0.413168\pi\)
\(270\) 0 0
\(271\) 7.48139 0.454462 0.227231 0.973841i \(-0.427033\pi\)
0.227231 + 0.973841i \(0.427033\pi\)
\(272\) 0 0
\(273\) −2.37358 −0.143656
\(274\) 0 0
\(275\) −29.4387 −1.77522
\(276\) 0 0
\(277\) −1.74162 −0.104644 −0.0523219 0.998630i \(-0.516662\pi\)
−0.0523219 + 0.998630i \(0.516662\pi\)
\(278\) 0 0
\(279\) 1.12178 0.0671594
\(280\) 0 0
\(281\) 5.37920 0.320896 0.160448 0.987044i \(-0.448706\pi\)
0.160448 + 0.987044i \(0.448706\pi\)
\(282\) 0 0
\(283\) 17.0268 1.01214 0.506068 0.862493i \(-0.331098\pi\)
0.506068 + 0.862493i \(0.331098\pi\)
\(284\) 0 0
\(285\) −1.05796 −0.0626680
\(286\) 0 0
\(287\) 5.17937 0.305729
\(288\) 0 0
\(289\) 20.7805 1.22238
\(290\) 0 0
\(291\) −3.67758 −0.215584
\(292\) 0 0
\(293\) 16.0674 0.938666 0.469333 0.883021i \(-0.344494\pi\)
0.469333 + 0.883021i \(0.344494\pi\)
\(294\) 0 0
\(295\) 3.76560 0.219242
\(296\) 0 0
\(297\) −32.0024 −1.85697
\(298\) 0 0
\(299\) 0.909483 0.0525967
\(300\) 0 0
\(301\) 6.54753 0.377393
\(302\) 0 0
\(303\) −29.9796 −1.72228
\(304\) 0 0
\(305\) 6.69746 0.383495
\(306\) 0 0
\(307\) 1.35504 0.0773362 0.0386681 0.999252i \(-0.487688\pi\)
0.0386681 + 0.999252i \(0.487688\pi\)
\(308\) 0 0
\(309\) −20.5638 −1.16984
\(310\) 0 0
\(311\) −1.34852 −0.0764674 −0.0382337 0.999269i \(-0.512173\pi\)
−0.0382337 + 0.999269i \(0.512173\pi\)
\(312\) 0 0
\(313\) 11.1999 0.633055 0.316528 0.948583i \(-0.397483\pi\)
0.316528 + 0.948583i \(0.397483\pi\)
\(314\) 0 0
\(315\) 0.0942213 0.00530877
\(316\) 0 0
\(317\) 29.9972 1.68481 0.842405 0.538844i \(-0.181139\pi\)
0.842405 + 0.538844i \(0.181139\pi\)
\(318\) 0 0
\(319\) −3.56618 −0.199668
\(320\) 0 0
\(321\) 13.1809 0.735689
\(322\) 0 0
\(323\) −6.14658 −0.342005
\(324\) 0 0
\(325\) 6.20471 0.344175
\(326\) 0 0
\(327\) 25.7700 1.42509
\(328\) 0 0
\(329\) −5.37612 −0.296395
\(330\) 0 0
\(331\) 36.2557 1.99279 0.996397 0.0848067i \(-0.0270273\pi\)
0.996397 + 0.0848067i \(0.0270273\pi\)
\(332\) 0 0
\(333\) −0.611973 −0.0335359
\(334\) 0 0
\(335\) 6.15218 0.336130
\(336\) 0 0
\(337\) −6.06317 −0.330282 −0.165141 0.986270i \(-0.552808\pi\)
−0.165141 + 0.986270i \(0.552808\pi\)
\(338\) 0 0
\(339\) 13.2997 0.722341
\(340\) 0 0
\(341\) 44.9137 2.43222
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 0 0
\(345\) −0.720416 −0.0387859
\(346\) 0 0
\(347\) −12.7388 −0.683854 −0.341927 0.939727i \(-0.611080\pi\)
−0.341927 + 0.939727i \(0.611080\pi\)
\(348\) 0 0
\(349\) 11.9316 0.638684 0.319342 0.947640i \(-0.396538\pi\)
0.319342 + 0.947640i \(0.396538\pi\)
\(350\) 0 0
\(351\) 6.74506 0.360025
\(352\) 0 0
\(353\) −11.2660 −0.599631 −0.299816 0.953997i \(-0.596925\pi\)
−0.299816 + 0.953997i \(0.596925\pi\)
\(354\) 0 0
\(355\) 7.66842 0.406997
\(356\) 0 0
\(357\) 10.9234 0.578129
\(358\) 0 0
\(359\) −17.0796 −0.901426 −0.450713 0.892669i \(-0.648830\pi\)
−0.450713 + 0.892669i \(0.648830\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 51.8149 2.71958
\(364\) 0 0
\(365\) −2.45307 −0.128399
\(366\) 0 0
\(367\) 8.20498 0.428297 0.214148 0.976801i \(-0.431302\pi\)
0.214148 + 0.976801i \(0.431302\pi\)
\(368\) 0 0
\(369\) 0.819753 0.0426746
\(370\) 0 0
\(371\) −11.0005 −0.571119
\(372\) 0 0
\(373\) −0.815800 −0.0422405 −0.0211203 0.999777i \(-0.506723\pi\)
−0.0211203 + 0.999777i \(0.506723\pi\)
\(374\) 0 0
\(375\) −10.2046 −0.526965
\(376\) 0 0
\(377\) 0.751634 0.0387111
\(378\) 0 0
\(379\) 18.5580 0.953260 0.476630 0.879104i \(-0.341858\pi\)
0.476630 + 0.879104i \(0.341858\pi\)
\(380\) 0 0
\(381\) −8.70906 −0.446179
\(382\) 0 0
\(383\) 9.28157 0.474266 0.237133 0.971477i \(-0.423792\pi\)
0.237133 + 0.971477i \(0.423792\pi\)
\(384\) 0 0
\(385\) 3.77241 0.192260
\(386\) 0 0
\(387\) 1.03629 0.0526778
\(388\) 0 0
\(389\) 13.4543 0.682162 0.341081 0.940034i \(-0.389207\pi\)
0.341081 + 0.940034i \(0.389207\pi\)
\(390\) 0 0
\(391\) −4.18552 −0.211671
\(392\) 0 0
\(393\) 18.5312 0.934776
\(394\) 0 0
\(395\) 3.69878 0.186106
\(396\) 0 0
\(397\) 36.7449 1.84417 0.922087 0.386983i \(-0.126483\pi\)
0.922087 + 0.386983i \(0.126483\pi\)
\(398\) 0 0
\(399\) −1.77715 −0.0889689
\(400\) 0 0
\(401\) 5.94622 0.296940 0.148470 0.988917i \(-0.452565\pi\)
0.148470 + 0.988917i \(0.452565\pi\)
\(402\) 0 0
\(403\) −9.46634 −0.471552
\(404\) 0 0
\(405\) −5.62554 −0.279535
\(406\) 0 0
\(407\) −24.5021 −1.21452
\(408\) 0 0
\(409\) −26.0707 −1.28911 −0.644556 0.764557i \(-0.722958\pi\)
−0.644556 + 0.764557i \(0.722958\pi\)
\(410\) 0 0
\(411\) −11.8339 −0.583722
\(412\) 0 0
\(413\) 6.32544 0.311255
\(414\) 0 0
\(415\) 1.87490 0.0920353
\(416\) 0 0
\(417\) −34.9629 −1.71214
\(418\) 0 0
\(419\) 4.09313 0.199963 0.0999813 0.994989i \(-0.468122\pi\)
0.0999813 + 0.994989i \(0.468122\pi\)
\(420\) 0 0
\(421\) 29.4390 1.43477 0.717385 0.696677i \(-0.245339\pi\)
0.717385 + 0.696677i \(0.245339\pi\)
\(422\) 0 0
\(423\) −0.850893 −0.0413719
\(424\) 0 0
\(425\) −28.5546 −1.38510
\(426\) 0 0
\(427\) 11.2504 0.544443
\(428\) 0 0
\(429\) −15.0411 −0.726191
\(430\) 0 0
\(431\) 24.6970 1.18961 0.594806 0.803869i \(-0.297229\pi\)
0.594806 + 0.803869i \(0.297229\pi\)
\(432\) 0 0
\(433\) 14.2377 0.684221 0.342111 0.939660i \(-0.388858\pi\)
0.342111 + 0.939660i \(0.388858\pi\)
\(434\) 0 0
\(435\) −0.595382 −0.0285464
\(436\) 0 0
\(437\) 0.680950 0.0325743
\(438\) 0 0
\(439\) −25.8059 −1.23165 −0.615824 0.787883i \(-0.711177\pi\)
−0.615824 + 0.787883i \(0.711177\pi\)
\(440\) 0 0
\(441\) 0.158273 0.00753679
\(442\) 0 0
\(443\) −18.0465 −0.857414 −0.428707 0.903444i \(-0.641031\pi\)
−0.428707 + 0.903444i \(0.641031\pi\)
\(444\) 0 0
\(445\) −0.794076 −0.0376428
\(446\) 0 0
\(447\) −14.5737 −0.689313
\(448\) 0 0
\(449\) −20.4175 −0.963563 −0.481782 0.876291i \(-0.660010\pi\)
−0.481782 + 0.876291i \(0.660010\pi\)
\(450\) 0 0
\(451\) 32.8211 1.54549
\(452\) 0 0
\(453\) −34.3032 −1.61170
\(454\) 0 0
\(455\) −0.795101 −0.0372749
\(456\) 0 0
\(457\) −26.9470 −1.26053 −0.630263 0.776382i \(-0.717053\pi\)
−0.630263 + 0.776382i \(0.717053\pi\)
\(458\) 0 0
\(459\) −31.0414 −1.44889
\(460\) 0 0
\(461\) −37.1541 −1.73044 −0.865219 0.501395i \(-0.832820\pi\)
−0.865219 + 0.501395i \(0.832820\pi\)
\(462\) 0 0
\(463\) 29.9505 1.39192 0.695958 0.718082i \(-0.254980\pi\)
0.695958 + 0.718082i \(0.254980\pi\)
\(464\) 0 0
\(465\) 7.49845 0.347732
\(466\) 0 0
\(467\) −34.5022 −1.59657 −0.798285 0.602280i \(-0.794259\pi\)
−0.798285 + 0.602280i \(0.794259\pi\)
\(468\) 0 0
\(469\) 10.3344 0.477199
\(470\) 0 0
\(471\) 19.3992 0.893870
\(472\) 0 0
\(473\) 41.4909 1.90775
\(474\) 0 0
\(475\) 4.64561 0.213155
\(476\) 0 0
\(477\) −1.74108 −0.0797187
\(478\) 0 0
\(479\) −17.4697 −0.798213 −0.399107 0.916905i \(-0.630680\pi\)
−0.399107 + 0.916905i \(0.630680\pi\)
\(480\) 0 0
\(481\) 5.16423 0.235469
\(482\) 0 0
\(483\) −1.21015 −0.0550639
\(484\) 0 0
\(485\) −1.23192 −0.0559384
\(486\) 0 0
\(487\) 20.3957 0.924216 0.462108 0.886824i \(-0.347093\pi\)
0.462108 + 0.886824i \(0.347093\pi\)
\(488\) 0 0
\(489\) 44.5542 2.01481
\(490\) 0 0
\(491\) 6.05808 0.273397 0.136699 0.990613i \(-0.456351\pi\)
0.136699 + 0.990613i \(0.456351\pi\)
\(492\) 0 0
\(493\) −3.45909 −0.155789
\(494\) 0 0
\(495\) 0.597070 0.0268363
\(496\) 0 0
\(497\) 12.8814 0.577809
\(498\) 0 0
\(499\) −3.43566 −0.153801 −0.0769006 0.997039i \(-0.524502\pi\)
−0.0769006 + 0.997039i \(0.524502\pi\)
\(500\) 0 0
\(501\) −16.0034 −0.714978
\(502\) 0 0
\(503\) 9.44472 0.421119 0.210560 0.977581i \(-0.432471\pi\)
0.210560 + 0.977581i \(0.432471\pi\)
\(504\) 0 0
\(505\) −10.0426 −0.446888
\(506\) 0 0
\(507\) −19.9328 −0.885248
\(508\) 0 0
\(509\) 19.4717 0.863066 0.431533 0.902097i \(-0.357973\pi\)
0.431533 + 0.902097i \(0.357973\pi\)
\(510\) 0 0
\(511\) −4.12066 −0.182287
\(512\) 0 0
\(513\) 5.05018 0.222971
\(514\) 0 0
\(515\) −6.88846 −0.303542
\(516\) 0 0
\(517\) −34.0679 −1.49830
\(518\) 0 0
\(519\) −4.50162 −0.197599
\(520\) 0 0
\(521\) 7.70152 0.337410 0.168705 0.985667i \(-0.446042\pi\)
0.168705 + 0.985667i \(0.446042\pi\)
\(522\) 0 0
\(523\) −20.1150 −0.879566 −0.439783 0.898104i \(-0.644945\pi\)
−0.439783 + 0.898104i \(0.644945\pi\)
\(524\) 0 0
\(525\) −8.25595 −0.360319
\(526\) 0 0
\(527\) 43.5649 1.89772
\(528\) 0 0
\(529\) −22.5363 −0.979839
\(530\) 0 0
\(531\) 1.00114 0.0434460
\(532\) 0 0
\(533\) −6.91761 −0.299635
\(534\) 0 0
\(535\) 4.41535 0.190892
\(536\) 0 0
\(537\) −40.8349 −1.76216
\(538\) 0 0
\(539\) 6.33689 0.272949
\(540\) 0 0
\(541\) −24.4852 −1.05270 −0.526350 0.850268i \(-0.676440\pi\)
−0.526350 + 0.850268i \(0.676440\pi\)
\(542\) 0 0
\(543\) 19.9707 0.857026
\(544\) 0 0
\(545\) 8.63244 0.369773
\(546\) 0 0
\(547\) −27.8603 −1.19122 −0.595610 0.803274i \(-0.703090\pi\)
−0.595610 + 0.803274i \(0.703090\pi\)
\(548\) 0 0
\(549\) 1.78062 0.0759952
\(550\) 0 0
\(551\) 0.562766 0.0239746
\(552\) 0 0
\(553\) 6.21320 0.264212
\(554\) 0 0
\(555\) −4.09067 −0.173639
\(556\) 0 0
\(557\) 36.8766 1.56251 0.781255 0.624212i \(-0.214580\pi\)
0.781255 + 0.624212i \(0.214580\pi\)
\(558\) 0 0
\(559\) −8.74493 −0.369871
\(560\) 0 0
\(561\) 69.2205 2.92249
\(562\) 0 0
\(563\) −43.4402 −1.83078 −0.915392 0.402563i \(-0.868119\pi\)
−0.915392 + 0.402563i \(0.868119\pi\)
\(564\) 0 0
\(565\) 4.45513 0.187429
\(566\) 0 0
\(567\) −9.44977 −0.396853
\(568\) 0 0
\(569\) 17.9279 0.751577 0.375788 0.926705i \(-0.377372\pi\)
0.375788 + 0.926705i \(0.377372\pi\)
\(570\) 0 0
\(571\) −14.1579 −0.592492 −0.296246 0.955112i \(-0.595735\pi\)
−0.296246 + 0.955112i \(0.595735\pi\)
\(572\) 0 0
\(573\) −6.76171 −0.282475
\(574\) 0 0
\(575\) 3.16343 0.131924
\(576\) 0 0
\(577\) 40.7278 1.69552 0.847761 0.530379i \(-0.177950\pi\)
0.847761 + 0.530379i \(0.177950\pi\)
\(578\) 0 0
\(579\) 9.98031 0.414767
\(580\) 0 0
\(581\) 3.14945 0.130661
\(582\) 0 0
\(583\) −69.7091 −2.88705
\(584\) 0 0
\(585\) −0.125843 −0.00520296
\(586\) 0 0
\(587\) −19.9962 −0.825333 −0.412667 0.910882i \(-0.635403\pi\)
−0.412667 + 0.910882i \(0.635403\pi\)
\(588\) 0 0
\(589\) −7.08767 −0.292042
\(590\) 0 0
\(591\) −3.39672 −0.139722
\(592\) 0 0
\(593\) 22.7027 0.932287 0.466143 0.884709i \(-0.345643\pi\)
0.466143 + 0.884709i \(0.345643\pi\)
\(594\) 0 0
\(595\) 3.65912 0.150009
\(596\) 0 0
\(597\) −41.8712 −1.71368
\(598\) 0 0
\(599\) −17.4338 −0.712327 −0.356163 0.934424i \(-0.615915\pi\)
−0.356163 + 0.934424i \(0.615915\pi\)
\(600\) 0 0
\(601\) −15.9884 −0.652182 −0.326091 0.945338i \(-0.605732\pi\)
−0.326091 + 0.945338i \(0.605732\pi\)
\(602\) 0 0
\(603\) 1.63566 0.0666090
\(604\) 0 0
\(605\) 17.3569 0.705660
\(606\) 0 0
\(607\) −14.1982 −0.576288 −0.288144 0.957587i \(-0.593038\pi\)
−0.288144 + 0.957587i \(0.593038\pi\)
\(608\) 0 0
\(609\) −1.00012 −0.0405270
\(610\) 0 0
\(611\) 7.18039 0.290488
\(612\) 0 0
\(613\) −47.9776 −1.93780 −0.968898 0.247462i \(-0.920403\pi\)
−0.968898 + 0.247462i \(0.920403\pi\)
\(614\) 0 0
\(615\) 5.47956 0.220957
\(616\) 0 0
\(617\) −12.4820 −0.502507 −0.251254 0.967921i \(-0.580843\pi\)
−0.251254 + 0.967921i \(0.580843\pi\)
\(618\) 0 0
\(619\) 20.7684 0.834752 0.417376 0.908734i \(-0.362950\pi\)
0.417376 + 0.908734i \(0.362950\pi\)
\(620\) 0 0
\(621\) 3.43893 0.137999
\(622\) 0 0
\(623\) −1.33389 −0.0534410
\(624\) 0 0
\(625\) 19.8097 0.792387
\(626\) 0 0
\(627\) −11.2616 −0.449746
\(628\) 0 0
\(629\) −23.7662 −0.947622
\(630\) 0 0
\(631\) −4.31988 −0.171972 −0.0859858 0.996296i \(-0.527404\pi\)
−0.0859858 + 0.996296i \(0.527404\pi\)
\(632\) 0 0
\(633\) −31.3849 −1.24744
\(634\) 0 0
\(635\) −2.91736 −0.115772
\(636\) 0 0
\(637\) −1.33561 −0.0529187
\(638\) 0 0
\(639\) 2.03877 0.0806525
\(640\) 0 0
\(641\) −25.0506 −0.989438 −0.494719 0.869053i \(-0.664729\pi\)
−0.494719 + 0.869053i \(0.664729\pi\)
\(642\) 0 0
\(643\) −21.8163 −0.860352 −0.430176 0.902745i \(-0.641548\pi\)
−0.430176 + 0.902745i \(0.641548\pi\)
\(644\) 0 0
\(645\) 6.92700 0.272750
\(646\) 0 0
\(647\) −48.6618 −1.91309 −0.956547 0.291579i \(-0.905819\pi\)
−0.956547 + 0.291579i \(0.905819\pi\)
\(648\) 0 0
\(649\) 40.0836 1.57342
\(650\) 0 0
\(651\) 12.5959 0.493671
\(652\) 0 0
\(653\) 38.5650 1.50917 0.754583 0.656205i \(-0.227839\pi\)
0.754583 + 0.656205i \(0.227839\pi\)
\(654\) 0 0
\(655\) 6.20758 0.242550
\(656\) 0 0
\(657\) −0.652187 −0.0254442
\(658\) 0 0
\(659\) −19.8133 −0.771817 −0.385909 0.922537i \(-0.626112\pi\)
−0.385909 + 0.922537i \(0.626112\pi\)
\(660\) 0 0
\(661\) 20.9889 0.816372 0.408186 0.912899i \(-0.366161\pi\)
0.408186 + 0.912899i \(0.366161\pi\)
\(662\) 0 0
\(663\) −14.5894 −0.566605
\(664\) 0 0
\(665\) −0.595310 −0.0230851
\(666\) 0 0
\(667\) 0.383216 0.0148382
\(668\) 0 0
\(669\) 23.7790 0.919350
\(670\) 0 0
\(671\) 71.2923 2.75221
\(672\) 0 0
\(673\) 36.9137 1.42292 0.711460 0.702727i \(-0.248034\pi\)
0.711460 + 0.702727i \(0.248034\pi\)
\(674\) 0 0
\(675\) 23.4612 0.903021
\(676\) 0 0
\(677\) 30.1339 1.15814 0.579070 0.815278i \(-0.303416\pi\)
0.579070 + 0.815278i \(0.303416\pi\)
\(678\) 0 0
\(679\) −2.06937 −0.0794150
\(680\) 0 0
\(681\) 47.0617 1.80341
\(682\) 0 0
\(683\) −5.35906 −0.205059 −0.102529 0.994730i \(-0.532694\pi\)
−0.102529 + 0.994730i \(0.532694\pi\)
\(684\) 0 0
\(685\) −3.96411 −0.151461
\(686\) 0 0
\(687\) 16.1936 0.617823
\(688\) 0 0
\(689\) 14.6924 0.559735
\(690\) 0 0
\(691\) −40.4255 −1.53786 −0.768929 0.639334i \(-0.779210\pi\)
−0.768929 + 0.639334i \(0.779210\pi\)
\(692\) 0 0
\(693\) 1.00296 0.0380991
\(694\) 0 0
\(695\) −11.7119 −0.444256
\(696\) 0 0
\(697\) 31.8355 1.20585
\(698\) 0 0
\(699\) 17.7789 0.672460
\(700\) 0 0
\(701\) 15.2489 0.575945 0.287972 0.957639i \(-0.407019\pi\)
0.287972 + 0.957639i \(0.407019\pi\)
\(702\) 0 0
\(703\) 3.86658 0.145831
\(704\) 0 0
\(705\) −5.68771 −0.214212
\(706\) 0 0
\(707\) −16.8695 −0.634441
\(708\) 0 0
\(709\) −18.0504 −0.677897 −0.338948 0.940805i \(-0.610071\pi\)
−0.338948 + 0.940805i \(0.610071\pi\)
\(710\) 0 0
\(711\) 0.983380 0.0368796
\(712\) 0 0
\(713\) −4.82635 −0.180748
\(714\) 0 0
\(715\) −5.03846 −0.188428
\(716\) 0 0
\(717\) −34.9474 −1.30513
\(718\) 0 0
\(719\) 12.8380 0.478778 0.239389 0.970924i \(-0.423053\pi\)
0.239389 + 0.970924i \(0.423053\pi\)
\(720\) 0 0
\(721\) −11.5712 −0.430935
\(722\) 0 0
\(723\) −34.5873 −1.28632
\(724\) 0 0
\(725\) 2.61439 0.0970959
\(726\) 0 0
\(727\) −23.5441 −0.873201 −0.436601 0.899655i \(-0.643818\pi\)
−0.436601 + 0.899655i \(0.643818\pi\)
\(728\) 0 0
\(729\) 25.4292 0.941823
\(730\) 0 0
\(731\) 40.2449 1.48851
\(732\) 0 0
\(733\) 26.0506 0.962202 0.481101 0.876665i \(-0.340237\pi\)
0.481101 + 0.876665i \(0.340237\pi\)
\(734\) 0 0
\(735\) 1.05796 0.0390233
\(736\) 0 0
\(737\) 65.4880 2.41228
\(738\) 0 0
\(739\) −42.8828 −1.57747 −0.788735 0.614734i \(-0.789263\pi\)
−0.788735 + 0.614734i \(0.789263\pi\)
\(740\) 0 0
\(741\) 2.37358 0.0871956
\(742\) 0 0
\(743\) 10.9844 0.402977 0.201489 0.979491i \(-0.435422\pi\)
0.201489 + 0.979491i \(0.435422\pi\)
\(744\) 0 0
\(745\) −4.88190 −0.178859
\(746\) 0 0
\(747\) 0.498472 0.0182381
\(748\) 0 0
\(749\) 7.41689 0.271007
\(750\) 0 0
\(751\) 18.7476 0.684111 0.342055 0.939680i \(-0.388877\pi\)
0.342055 + 0.939680i \(0.388877\pi\)
\(752\) 0 0
\(753\) −13.9512 −0.508410
\(754\) 0 0
\(755\) −11.4909 −0.418195
\(756\) 0 0
\(757\) 4.34718 0.158001 0.0790006 0.996875i \(-0.474827\pi\)
0.0790006 + 0.996875i \(0.474827\pi\)
\(758\) 0 0
\(759\) −7.66860 −0.278353
\(760\) 0 0
\(761\) −14.6210 −0.530012 −0.265006 0.964247i \(-0.585374\pi\)
−0.265006 + 0.964247i \(0.585374\pi\)
\(762\) 0 0
\(763\) 14.5007 0.524962
\(764\) 0 0
\(765\) 0.579139 0.0209388
\(766\) 0 0
\(767\) −8.44831 −0.305051
\(768\) 0 0
\(769\) −46.7009 −1.68408 −0.842039 0.539417i \(-0.818645\pi\)
−0.842039 + 0.539417i \(0.818645\pi\)
\(770\) 0 0
\(771\) −4.80449 −0.173030
\(772\) 0 0
\(773\) 29.9149 1.07596 0.537982 0.842956i \(-0.319187\pi\)
0.537982 + 0.842956i \(0.319187\pi\)
\(774\) 0 0
\(775\) −32.9265 −1.18276
\(776\) 0 0
\(777\) −6.87150 −0.246514
\(778\) 0 0
\(779\) −5.17937 −0.185570
\(780\) 0 0
\(781\) 81.6278 2.92087
\(782\) 0 0
\(783\) 2.84207 0.101567
\(784\) 0 0
\(785\) 6.49835 0.231936
\(786\) 0 0
\(787\) 1.45641 0.0519154 0.0259577 0.999663i \(-0.491736\pi\)
0.0259577 + 0.999663i \(0.491736\pi\)
\(788\) 0 0
\(789\) −11.0020 −0.391682
\(790\) 0 0
\(791\) 7.48371 0.266090
\(792\) 0 0
\(793\) −15.0261 −0.533591
\(794\) 0 0
\(795\) −11.6381 −0.412760
\(796\) 0 0
\(797\) 12.0572 0.427089 0.213544 0.976933i \(-0.431499\pi\)
0.213544 + 0.976933i \(0.431499\pi\)
\(798\) 0 0
\(799\) −33.0448 −1.16904
\(800\) 0 0
\(801\) −0.211118 −0.00745947
\(802\) 0 0
\(803\) −26.1121 −0.921477
\(804\) 0 0
\(805\) −0.405377 −0.0142877
\(806\) 0 0
\(807\) 15.7058 0.552871
\(808\) 0 0
\(809\) 0.172092 0.00605042 0.00302521 0.999995i \(-0.499037\pi\)
0.00302521 + 0.999995i \(0.499037\pi\)
\(810\) 0 0
\(811\) 41.8400 1.46920 0.734600 0.678500i \(-0.237370\pi\)
0.734600 + 0.678500i \(0.237370\pi\)
\(812\) 0 0
\(813\) 13.2956 0.466296
\(814\) 0 0
\(815\) 14.9248 0.522791
\(816\) 0 0
\(817\) −6.54753 −0.229069
\(818\) 0 0
\(819\) −0.211390 −0.00738657
\(820\) 0 0
\(821\) −17.0138 −0.593786 −0.296893 0.954911i \(-0.595951\pi\)
−0.296893 + 0.954911i \(0.595951\pi\)
\(822\) 0 0
\(823\) 18.5165 0.645446 0.322723 0.946493i \(-0.395402\pi\)
0.322723 + 0.946493i \(0.395402\pi\)
\(824\) 0 0
\(825\) −52.3170 −1.82145
\(826\) 0 0
\(827\) −12.6891 −0.441244 −0.220622 0.975359i \(-0.570809\pi\)
−0.220622 + 0.975359i \(0.570809\pi\)
\(828\) 0 0
\(829\) −16.0508 −0.557468 −0.278734 0.960368i \(-0.589915\pi\)
−0.278734 + 0.960368i \(0.589915\pi\)
\(830\) 0 0
\(831\) −3.09512 −0.107369
\(832\) 0 0
\(833\) 6.14658 0.212966
\(834\) 0 0
\(835\) −5.36081 −0.185518
\(836\) 0 0
\(837\) −35.7940 −1.23722
\(838\) 0 0
\(839\) 24.5786 0.848547 0.424274 0.905534i \(-0.360529\pi\)
0.424274 + 0.905534i \(0.360529\pi\)
\(840\) 0 0
\(841\) −28.6833 −0.989079
\(842\) 0 0
\(843\) 9.55966 0.329252
\(844\) 0 0
\(845\) −6.67709 −0.229699
\(846\) 0 0
\(847\) 29.1561 1.00182
\(848\) 0 0
\(849\) 30.2592 1.03849
\(850\) 0 0
\(851\) 2.63295 0.0902562
\(852\) 0 0
\(853\) −32.3755 −1.10852 −0.554258 0.832345i \(-0.686998\pi\)
−0.554258 + 0.832345i \(0.686998\pi\)
\(854\) 0 0
\(855\) −0.0942213 −0.00322230
\(856\) 0 0
\(857\) −8.68521 −0.296681 −0.148341 0.988936i \(-0.547393\pi\)
−0.148341 + 0.988936i \(0.547393\pi\)
\(858\) 0 0
\(859\) −42.5806 −1.45283 −0.726415 0.687256i \(-0.758815\pi\)
−0.726415 + 0.687256i \(0.758815\pi\)
\(860\) 0 0
\(861\) 9.20454 0.313690
\(862\) 0 0
\(863\) −17.8080 −0.606190 −0.303095 0.952960i \(-0.598020\pi\)
−0.303095 + 0.952960i \(0.598020\pi\)
\(864\) 0 0
\(865\) −1.50795 −0.0512719
\(866\) 0 0
\(867\) 36.9301 1.25421
\(868\) 0 0
\(869\) 39.3724 1.33562
\(870\) 0 0
\(871\) −13.8027 −0.467688
\(872\) 0 0
\(873\) −0.327524 −0.0110850
\(874\) 0 0
\(875\) −5.74213 −0.194119
\(876\) 0 0
\(877\) −52.7393 −1.78088 −0.890440 0.455100i \(-0.849604\pi\)
−0.890440 + 0.455100i \(0.849604\pi\)
\(878\) 0 0
\(879\) 28.5542 0.963109
\(880\) 0 0
\(881\) 16.3578 0.551107 0.275553 0.961286i \(-0.411139\pi\)
0.275553 + 0.961286i \(0.411139\pi\)
\(882\) 0 0
\(883\) −7.36524 −0.247860 −0.123930 0.992291i \(-0.539550\pi\)
−0.123930 + 0.992291i \(0.539550\pi\)
\(884\) 0 0
\(885\) 6.69205 0.224951
\(886\) 0 0
\(887\) 16.9509 0.569155 0.284578 0.958653i \(-0.408147\pi\)
0.284578 + 0.958653i \(0.408147\pi\)
\(888\) 0 0
\(889\) −4.90057 −0.164360
\(890\) 0 0
\(891\) −59.8821 −2.00613
\(892\) 0 0
\(893\) 5.37612 0.179905
\(894\) 0 0
\(895\) −13.6789 −0.457234
\(896\) 0 0
\(897\) 1.61629 0.0539663
\(898\) 0 0
\(899\) −3.98870 −0.133031
\(900\) 0 0
\(901\) −67.6156 −2.25260
\(902\) 0 0
\(903\) 11.6360 0.387220
\(904\) 0 0
\(905\) 6.68979 0.222376
\(906\) 0 0
\(907\) −8.64992 −0.287216 −0.143608 0.989635i \(-0.545870\pi\)
−0.143608 + 0.989635i \(0.545870\pi\)
\(908\) 0 0
\(909\) −2.66997 −0.0885574
\(910\) 0 0
\(911\) −48.7347 −1.61465 −0.807326 0.590105i \(-0.799086\pi\)
−0.807326 + 0.590105i \(0.799086\pi\)
\(912\) 0 0
\(913\) 19.9577 0.660504
\(914\) 0 0
\(915\) 11.9024 0.393481
\(916\) 0 0
\(917\) 10.4275 0.344345
\(918\) 0 0
\(919\) −6.03966 −0.199230 −0.0996150 0.995026i \(-0.531761\pi\)
−0.0996150 + 0.995026i \(0.531761\pi\)
\(920\) 0 0
\(921\) 2.40811 0.0793500
\(922\) 0 0
\(923\) −17.2045 −0.566292
\(924\) 0 0
\(925\) 17.9626 0.590606
\(926\) 0 0
\(927\) −1.83141 −0.0601513
\(928\) 0 0
\(929\) −3.25096 −0.106661 −0.0533303 0.998577i \(-0.516984\pi\)
−0.0533303 + 0.998577i \(0.516984\pi\)
\(930\) 0 0
\(931\) −1.00000 −0.0327737
\(932\) 0 0
\(933\) −2.39652 −0.0784586
\(934\) 0 0
\(935\) 23.1874 0.758311
\(936\) 0 0
\(937\) −58.4338 −1.90895 −0.954474 0.298295i \(-0.903582\pi\)
−0.954474 + 0.298295i \(0.903582\pi\)
\(938\) 0 0
\(939\) 19.9039 0.649540
\(940\) 0 0
\(941\) 2.40089 0.0782668 0.0391334 0.999234i \(-0.487540\pi\)
0.0391334 + 0.999234i \(0.487540\pi\)
\(942\) 0 0
\(943\) −3.52690 −0.114852
\(944\) 0 0
\(945\) −3.00643 −0.0977990
\(946\) 0 0
\(947\) 17.7777 0.577699 0.288850 0.957374i \(-0.406727\pi\)
0.288850 + 0.957374i \(0.406727\pi\)
\(948\) 0 0
\(949\) 5.50358 0.178654
\(950\) 0 0
\(951\) 53.3096 1.72868
\(952\) 0 0
\(953\) 23.5179 0.761818 0.380909 0.924613i \(-0.375611\pi\)
0.380909 + 0.924613i \(0.375611\pi\)
\(954\) 0 0
\(955\) −2.26504 −0.0732949
\(956\) 0 0
\(957\) −6.33765 −0.204867
\(958\) 0 0
\(959\) −6.65890 −0.215027
\(960\) 0 0
\(961\) 19.2350 0.620485
\(962\) 0 0
\(963\) 1.17389 0.0378281
\(964\) 0 0
\(965\) 3.34320 0.107621
\(966\) 0 0
\(967\) 11.5952 0.372878 0.186439 0.982467i \(-0.440305\pi\)
0.186439 + 0.982467i \(0.440305\pi\)
\(968\) 0 0
\(969\) −10.9234 −0.350911
\(970\) 0 0
\(971\) −27.5021 −0.882586 −0.441293 0.897363i \(-0.645480\pi\)
−0.441293 + 0.897363i \(0.645480\pi\)
\(972\) 0 0
\(973\) −19.6735 −0.630705
\(974\) 0 0
\(975\) 11.0267 0.353137
\(976\) 0 0
\(977\) −51.6048 −1.65098 −0.825492 0.564414i \(-0.809102\pi\)
−0.825492 + 0.564414i \(0.809102\pi\)
\(978\) 0 0
\(979\) −8.45268 −0.270149
\(980\) 0 0
\(981\) 2.29507 0.0732760
\(982\) 0 0
\(983\) 21.4305 0.683526 0.341763 0.939786i \(-0.388976\pi\)
0.341763 + 0.939786i \(0.388976\pi\)
\(984\) 0 0
\(985\) −1.13783 −0.0362544
\(986\) 0 0
\(987\) −9.55420 −0.304113
\(988\) 0 0
\(989\) −4.45854 −0.141773
\(990\) 0 0
\(991\) −33.4365 −1.06214 −0.531072 0.847326i \(-0.678211\pi\)
−0.531072 + 0.847326i \(0.678211\pi\)
\(992\) 0 0
\(993\) 64.4320 2.04469
\(994\) 0 0
\(995\) −14.0260 −0.444654
\(996\) 0 0
\(997\) 53.2879 1.68764 0.843822 0.536623i \(-0.180300\pi\)
0.843822 + 0.536623i \(0.180300\pi\)
\(998\) 0 0
\(999\) 19.5269 0.617804
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8512.2.a.ci.1.5 7
4.3 odd 2 8512.2.a.ch.1.3 7
8.3 odd 2 4256.2.a.q.1.5 yes 7
8.5 even 2 4256.2.a.p.1.3 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4256.2.a.p.1.3 7 8.5 even 2
4256.2.a.q.1.5 yes 7 8.3 odd 2
8512.2.a.ch.1.3 7 4.3 odd 2
8512.2.a.ci.1.5 7 1.1 even 1 trivial