Properties

Label 8512.2.a.ch.1.6
Level $8512$
Weight $2$
Character 8512.1
Self dual yes
Analytic conductor $67.969$
Analytic rank $0$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8512,2,Mod(1,8512)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8512, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8512.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 8512 = 2^{6} \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8512.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(67.9686622005\)
Analytic rank: \(0\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - 3x^{6} - 10x^{5} + 31x^{4} + 12x^{3} - 45x^{2} - 15x + 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 4256)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(-0.838827\) of defining polynomial
Character \(\chi\) \(=\) 8512.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.838827 q^{3} +2.50991 q^{5} -1.00000 q^{7} -2.29637 q^{9} +O(q^{10})\) \(q+0.838827 q^{3} +2.50991 q^{5} -1.00000 q^{7} -2.29637 q^{9} +3.46016 q^{11} +6.36062 q^{13} +2.10538 q^{15} +6.34077 q^{17} +1.00000 q^{19} -0.838827 q^{21} -5.29877 q^{23} +1.29966 q^{25} -4.44274 q^{27} +10.1298 q^{29} -9.39225 q^{31} +2.90248 q^{33} -2.50991 q^{35} -2.14446 q^{37} +5.33546 q^{39} -7.43345 q^{41} +1.15432 q^{43} -5.76368 q^{45} +5.96586 q^{47} +1.00000 q^{49} +5.31881 q^{51} +6.50168 q^{53} +8.68469 q^{55} +0.838827 q^{57} +9.26281 q^{59} +7.12100 q^{61} +2.29637 q^{63} +15.9646 q^{65} +7.54487 q^{67} -4.44476 q^{69} +1.10596 q^{71} +0.0584070 q^{73} +1.09019 q^{75} -3.46016 q^{77} +16.5650 q^{79} +3.16241 q^{81} -5.59617 q^{83} +15.9148 q^{85} +8.49719 q^{87} -14.8293 q^{89} -6.36062 q^{91} -7.87848 q^{93} +2.50991 q^{95} -1.89047 q^{97} -7.94580 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q - 3 q^{3} + 5 q^{5} - 7 q^{7} + 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 7 q - 3 q^{3} + 5 q^{5} - 7 q^{7} + 8 q^{9} - 3 q^{11} + 16 q^{13} + 8 q^{15} + 8 q^{17} + 7 q^{19} + 3 q^{21} + 10 q^{23} + 8 q^{25} - 6 q^{27} + 11 q^{29} + 14 q^{31} + 3 q^{33} - 5 q^{35} + 13 q^{37} - 6 q^{39} + 11 q^{41} - 11 q^{43} - 4 q^{45} + 7 q^{47} + 7 q^{49} - 24 q^{51} + 9 q^{53} - 8 q^{55} - 3 q^{57} - 23 q^{59} + 23 q^{61} - 8 q^{63} + 40 q^{65} - 16 q^{67} + 10 q^{69} + 3 q^{71} + 4 q^{73} - 48 q^{75} + 3 q^{77} + 29 q^{79} + 23 q^{81} - 6 q^{83} + 6 q^{85} - 6 q^{87} + 15 q^{89} - 16 q^{91} - 42 q^{93} + 5 q^{95} - 13 q^{97} - 47 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.838827 0.484297 0.242149 0.970239i \(-0.422148\pi\)
0.242149 + 0.970239i \(0.422148\pi\)
\(4\) 0 0
\(5\) 2.50991 1.12247 0.561233 0.827658i \(-0.310327\pi\)
0.561233 + 0.827658i \(0.310327\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 0 0
\(9\) −2.29637 −0.765456
\(10\) 0 0
\(11\) 3.46016 1.04328 0.521639 0.853167i \(-0.325321\pi\)
0.521639 + 0.853167i \(0.325321\pi\)
\(12\) 0 0
\(13\) 6.36062 1.76412 0.882059 0.471139i \(-0.156157\pi\)
0.882059 + 0.471139i \(0.156157\pi\)
\(14\) 0 0
\(15\) 2.10538 0.543608
\(16\) 0 0
\(17\) 6.34077 1.53786 0.768931 0.639332i \(-0.220789\pi\)
0.768931 + 0.639332i \(0.220789\pi\)
\(18\) 0 0
\(19\) 1.00000 0.229416
\(20\) 0 0
\(21\) −0.838827 −0.183047
\(22\) 0 0
\(23\) −5.29877 −1.10487 −0.552435 0.833556i \(-0.686301\pi\)
−0.552435 + 0.833556i \(0.686301\pi\)
\(24\) 0 0
\(25\) 1.29966 0.259932
\(26\) 0 0
\(27\) −4.44274 −0.855006
\(28\) 0 0
\(29\) 10.1298 1.88106 0.940532 0.339704i \(-0.110327\pi\)
0.940532 + 0.339704i \(0.110327\pi\)
\(30\) 0 0
\(31\) −9.39225 −1.68690 −0.843449 0.537209i \(-0.819479\pi\)
−0.843449 + 0.537209i \(0.819479\pi\)
\(32\) 0 0
\(33\) 2.90248 0.505256
\(34\) 0 0
\(35\) −2.50991 −0.424253
\(36\) 0 0
\(37\) −2.14446 −0.352546 −0.176273 0.984341i \(-0.556404\pi\)
−0.176273 + 0.984341i \(0.556404\pi\)
\(38\) 0 0
\(39\) 5.33546 0.854357
\(40\) 0 0
\(41\) −7.43345 −1.16091 −0.580455 0.814292i \(-0.697125\pi\)
−0.580455 + 0.814292i \(0.697125\pi\)
\(42\) 0 0
\(43\) 1.15432 0.176032 0.0880159 0.996119i \(-0.471947\pi\)
0.0880159 + 0.996119i \(0.471947\pi\)
\(44\) 0 0
\(45\) −5.76368 −0.859199
\(46\) 0 0
\(47\) 5.96586 0.870211 0.435105 0.900380i \(-0.356711\pi\)
0.435105 + 0.900380i \(0.356711\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 5.31881 0.744782
\(52\) 0 0
\(53\) 6.50168 0.893074 0.446537 0.894765i \(-0.352657\pi\)
0.446537 + 0.894765i \(0.352657\pi\)
\(54\) 0 0
\(55\) 8.68469 1.17104
\(56\) 0 0
\(57\) 0.838827 0.111105
\(58\) 0 0
\(59\) 9.26281 1.20591 0.602957 0.797773i \(-0.293989\pi\)
0.602957 + 0.797773i \(0.293989\pi\)
\(60\) 0 0
\(61\) 7.12100 0.911751 0.455875 0.890044i \(-0.349326\pi\)
0.455875 + 0.890044i \(0.349326\pi\)
\(62\) 0 0
\(63\) 2.29637 0.289315
\(64\) 0 0
\(65\) 15.9646 1.98016
\(66\) 0 0
\(67\) 7.54487 0.921753 0.460876 0.887464i \(-0.347535\pi\)
0.460876 + 0.887464i \(0.347535\pi\)
\(68\) 0 0
\(69\) −4.44476 −0.535086
\(70\) 0 0
\(71\) 1.10596 0.131254 0.0656269 0.997844i \(-0.479095\pi\)
0.0656269 + 0.997844i \(0.479095\pi\)
\(72\) 0 0
\(73\) 0.0584070 0.00683603 0.00341801 0.999994i \(-0.498912\pi\)
0.00341801 + 0.999994i \(0.498912\pi\)
\(74\) 0 0
\(75\) 1.09019 0.125884
\(76\) 0 0
\(77\) −3.46016 −0.394322
\(78\) 0 0
\(79\) 16.5650 1.86371 0.931857 0.362827i \(-0.118188\pi\)
0.931857 + 0.362827i \(0.118188\pi\)
\(80\) 0 0
\(81\) 3.16241 0.351379
\(82\) 0 0
\(83\) −5.59617 −0.614260 −0.307130 0.951668i \(-0.599369\pi\)
−0.307130 + 0.951668i \(0.599369\pi\)
\(84\) 0 0
\(85\) 15.9148 1.72620
\(86\) 0 0
\(87\) 8.49719 0.910994
\(88\) 0 0
\(89\) −14.8293 −1.57191 −0.785953 0.618286i \(-0.787827\pi\)
−0.785953 + 0.618286i \(0.787827\pi\)
\(90\) 0 0
\(91\) −6.36062 −0.666774
\(92\) 0 0
\(93\) −7.87848 −0.816960
\(94\) 0 0
\(95\) 2.50991 0.257512
\(96\) 0 0
\(97\) −1.89047 −0.191948 −0.0959741 0.995384i \(-0.530597\pi\)
−0.0959741 + 0.995384i \(0.530597\pi\)
\(98\) 0 0
\(99\) −7.94580 −0.798583
\(100\) 0 0
\(101\) 3.59919 0.358132 0.179066 0.983837i \(-0.442692\pi\)
0.179066 + 0.983837i \(0.442692\pi\)
\(102\) 0 0
\(103\) 9.29050 0.915420 0.457710 0.889101i \(-0.348670\pi\)
0.457710 + 0.889101i \(0.348670\pi\)
\(104\) 0 0
\(105\) −2.10538 −0.205464
\(106\) 0 0
\(107\) −19.8956 −1.92338 −0.961690 0.274138i \(-0.911608\pi\)
−0.961690 + 0.274138i \(0.911608\pi\)
\(108\) 0 0
\(109\) −0.787338 −0.0754133 −0.0377067 0.999289i \(-0.512005\pi\)
−0.0377067 + 0.999289i \(0.512005\pi\)
\(110\) 0 0
\(111\) −1.79883 −0.170737
\(112\) 0 0
\(113\) −10.5592 −0.993324 −0.496662 0.867944i \(-0.665441\pi\)
−0.496662 + 0.867944i \(0.665441\pi\)
\(114\) 0 0
\(115\) −13.2995 −1.24018
\(116\) 0 0
\(117\) −14.6063 −1.35035
\(118\) 0 0
\(119\) −6.34077 −0.581257
\(120\) 0 0
\(121\) 0.972699 0.0884272
\(122\) 0 0
\(123\) −6.23539 −0.562226
\(124\) 0 0
\(125\) −9.28753 −0.830702
\(126\) 0 0
\(127\) −1.27500 −0.113138 −0.0565688 0.998399i \(-0.518016\pi\)
−0.0565688 + 0.998399i \(0.518016\pi\)
\(128\) 0 0
\(129\) 0.968273 0.0852517
\(130\) 0 0
\(131\) 8.07361 0.705394 0.352697 0.935738i \(-0.385265\pi\)
0.352697 + 0.935738i \(0.385265\pi\)
\(132\) 0 0
\(133\) −1.00000 −0.0867110
\(134\) 0 0
\(135\) −11.1509 −0.959715
\(136\) 0 0
\(137\) 10.8874 0.930172 0.465086 0.885265i \(-0.346023\pi\)
0.465086 + 0.885265i \(0.346023\pi\)
\(138\) 0 0
\(139\) −12.1523 −1.03075 −0.515374 0.856966i \(-0.672347\pi\)
−0.515374 + 0.856966i \(0.672347\pi\)
\(140\) 0 0
\(141\) 5.00433 0.421441
\(142\) 0 0
\(143\) 22.0087 1.84046
\(144\) 0 0
\(145\) 25.4250 2.11143
\(146\) 0 0
\(147\) 0.838827 0.0691853
\(148\) 0 0
\(149\) −13.5985 −1.11403 −0.557014 0.830503i \(-0.688053\pi\)
−0.557014 + 0.830503i \(0.688053\pi\)
\(150\) 0 0
\(151\) −16.4025 −1.33482 −0.667409 0.744692i \(-0.732597\pi\)
−0.667409 + 0.744692i \(0.732597\pi\)
\(152\) 0 0
\(153\) −14.5607 −1.17717
\(154\) 0 0
\(155\) −23.5737 −1.89349
\(156\) 0 0
\(157\) 17.2552 1.37711 0.688557 0.725183i \(-0.258245\pi\)
0.688557 + 0.725183i \(0.258245\pi\)
\(158\) 0 0
\(159\) 5.45379 0.432514
\(160\) 0 0
\(161\) 5.29877 0.417602
\(162\) 0 0
\(163\) −14.9989 −1.17480 −0.587401 0.809296i \(-0.699849\pi\)
−0.587401 + 0.809296i \(0.699849\pi\)
\(164\) 0 0
\(165\) 7.28496 0.567133
\(166\) 0 0
\(167\) 4.30131 0.332845 0.166423 0.986055i \(-0.446778\pi\)
0.166423 + 0.986055i \(0.446778\pi\)
\(168\) 0 0
\(169\) 27.4575 2.11211
\(170\) 0 0
\(171\) −2.29637 −0.175608
\(172\) 0 0
\(173\) 24.4226 1.85682 0.928410 0.371558i \(-0.121176\pi\)
0.928410 + 0.371558i \(0.121176\pi\)
\(174\) 0 0
\(175\) −1.29966 −0.0982450
\(176\) 0 0
\(177\) 7.76990 0.584021
\(178\) 0 0
\(179\) −8.51414 −0.636377 −0.318188 0.948028i \(-0.603074\pi\)
−0.318188 + 0.948028i \(0.603074\pi\)
\(180\) 0 0
\(181\) 16.5481 1.23001 0.615004 0.788524i \(-0.289154\pi\)
0.615004 + 0.788524i \(0.289154\pi\)
\(182\) 0 0
\(183\) 5.97329 0.441558
\(184\) 0 0
\(185\) −5.38240 −0.395722
\(186\) 0 0
\(187\) 21.9401 1.60442
\(188\) 0 0
\(189\) 4.44274 0.323162
\(190\) 0 0
\(191\) −15.6296 −1.13092 −0.565459 0.824776i \(-0.691301\pi\)
−0.565459 + 0.824776i \(0.691301\pi\)
\(192\) 0 0
\(193\) −13.4908 −0.971089 −0.485545 0.874212i \(-0.661379\pi\)
−0.485545 + 0.874212i \(0.661379\pi\)
\(194\) 0 0
\(195\) 13.3915 0.958988
\(196\) 0 0
\(197\) −13.3172 −0.948811 −0.474405 0.880306i \(-0.657337\pi\)
−0.474405 + 0.880306i \(0.657337\pi\)
\(198\) 0 0
\(199\) 8.56699 0.607298 0.303649 0.952784i \(-0.401795\pi\)
0.303649 + 0.952784i \(0.401795\pi\)
\(200\) 0 0
\(201\) 6.32885 0.446402
\(202\) 0 0
\(203\) −10.1298 −0.710976
\(204\) 0 0
\(205\) −18.6573 −1.30308
\(206\) 0 0
\(207\) 12.1679 0.845730
\(208\) 0 0
\(209\) 3.46016 0.239344
\(210\) 0 0
\(211\) −9.06901 −0.624337 −0.312168 0.950027i \(-0.601055\pi\)
−0.312168 + 0.950027i \(0.601055\pi\)
\(212\) 0 0
\(213\) 0.927714 0.0635659
\(214\) 0 0
\(215\) 2.89723 0.197590
\(216\) 0 0
\(217\) 9.39225 0.637588
\(218\) 0 0
\(219\) 0.0489934 0.00331067
\(220\) 0 0
\(221\) 40.3312 2.71297
\(222\) 0 0
\(223\) −2.44936 −0.164021 −0.0820105 0.996631i \(-0.526134\pi\)
−0.0820105 + 0.996631i \(0.526134\pi\)
\(224\) 0 0
\(225\) −2.98450 −0.198966
\(226\) 0 0
\(227\) 11.5126 0.764117 0.382058 0.924138i \(-0.375215\pi\)
0.382058 + 0.924138i \(0.375215\pi\)
\(228\) 0 0
\(229\) 8.76061 0.578918 0.289459 0.957190i \(-0.406525\pi\)
0.289459 + 0.957190i \(0.406525\pi\)
\(230\) 0 0
\(231\) −2.90248 −0.190969
\(232\) 0 0
\(233\) 10.1559 0.665333 0.332666 0.943045i \(-0.392052\pi\)
0.332666 + 0.943045i \(0.392052\pi\)
\(234\) 0 0
\(235\) 14.9738 0.976783
\(236\) 0 0
\(237\) 13.8952 0.902591
\(238\) 0 0
\(239\) −16.4419 −1.06354 −0.531770 0.846889i \(-0.678473\pi\)
−0.531770 + 0.846889i \(0.678473\pi\)
\(240\) 0 0
\(241\) −5.10981 −0.329152 −0.164576 0.986364i \(-0.552626\pi\)
−0.164576 + 0.986364i \(0.552626\pi\)
\(242\) 0 0
\(243\) 15.9809 1.02518
\(244\) 0 0
\(245\) 2.50991 0.160352
\(246\) 0 0
\(247\) 6.36062 0.404716
\(248\) 0 0
\(249\) −4.69422 −0.297484
\(250\) 0 0
\(251\) −6.82819 −0.430992 −0.215496 0.976505i \(-0.569137\pi\)
−0.215496 + 0.976505i \(0.569137\pi\)
\(252\) 0 0
\(253\) −18.3346 −1.15269
\(254\) 0 0
\(255\) 13.3497 0.835994
\(256\) 0 0
\(257\) −13.2450 −0.826202 −0.413101 0.910685i \(-0.635554\pi\)
−0.413101 + 0.910685i \(0.635554\pi\)
\(258\) 0 0
\(259\) 2.14446 0.133250
\(260\) 0 0
\(261\) −23.2619 −1.43987
\(262\) 0 0
\(263\) 1.19868 0.0739139 0.0369569 0.999317i \(-0.488234\pi\)
0.0369569 + 0.999317i \(0.488234\pi\)
\(264\) 0 0
\(265\) 16.3186 1.00245
\(266\) 0 0
\(267\) −12.4393 −0.761270
\(268\) 0 0
\(269\) 29.0920 1.77377 0.886885 0.461989i \(-0.152864\pi\)
0.886885 + 0.461989i \(0.152864\pi\)
\(270\) 0 0
\(271\) 12.7017 0.771572 0.385786 0.922588i \(-0.373930\pi\)
0.385786 + 0.922588i \(0.373930\pi\)
\(272\) 0 0
\(273\) −5.33546 −0.322917
\(274\) 0 0
\(275\) 4.49703 0.271181
\(276\) 0 0
\(277\) −7.98143 −0.479558 −0.239779 0.970828i \(-0.577075\pi\)
−0.239779 + 0.970828i \(0.577075\pi\)
\(278\) 0 0
\(279\) 21.5681 1.29125
\(280\) 0 0
\(281\) 20.4089 1.21749 0.608745 0.793366i \(-0.291673\pi\)
0.608745 + 0.793366i \(0.291673\pi\)
\(282\) 0 0
\(283\) 18.9925 1.12899 0.564493 0.825438i \(-0.309072\pi\)
0.564493 + 0.825438i \(0.309072\pi\)
\(284\) 0 0
\(285\) 2.10538 0.124712
\(286\) 0 0
\(287\) 7.43345 0.438783
\(288\) 0 0
\(289\) 23.2053 1.36502
\(290\) 0 0
\(291\) −1.58578 −0.0929600
\(292\) 0 0
\(293\) −19.2730 −1.12594 −0.562971 0.826476i \(-0.690342\pi\)
−0.562971 + 0.826476i \(0.690342\pi\)
\(294\) 0 0
\(295\) 23.2488 1.35360
\(296\) 0 0
\(297\) −15.3726 −0.892008
\(298\) 0 0
\(299\) −33.7035 −1.94912
\(300\) 0 0
\(301\) −1.15432 −0.0665337
\(302\) 0 0
\(303\) 3.01910 0.173443
\(304\) 0 0
\(305\) 17.8731 1.02341
\(306\) 0 0
\(307\) −8.77122 −0.500600 −0.250300 0.968168i \(-0.580529\pi\)
−0.250300 + 0.968168i \(0.580529\pi\)
\(308\) 0 0
\(309\) 7.79313 0.443336
\(310\) 0 0
\(311\) 5.49554 0.311623 0.155812 0.987787i \(-0.450201\pi\)
0.155812 + 0.987787i \(0.450201\pi\)
\(312\) 0 0
\(313\) −25.2854 −1.42922 −0.714608 0.699526i \(-0.753395\pi\)
−0.714608 + 0.699526i \(0.753395\pi\)
\(314\) 0 0
\(315\) 5.76368 0.324747
\(316\) 0 0
\(317\) 6.49512 0.364802 0.182401 0.983224i \(-0.441613\pi\)
0.182401 + 0.983224i \(0.441613\pi\)
\(318\) 0 0
\(319\) 35.0509 1.96247
\(320\) 0 0
\(321\) −16.6890 −0.931488
\(322\) 0 0
\(323\) 6.34077 0.352810
\(324\) 0 0
\(325\) 8.26663 0.458550
\(326\) 0 0
\(327\) −0.660441 −0.0365225
\(328\) 0 0
\(329\) −5.96586 −0.328909
\(330\) 0 0
\(331\) 12.1880 0.669914 0.334957 0.942233i \(-0.391278\pi\)
0.334957 + 0.942233i \(0.391278\pi\)
\(332\) 0 0
\(333\) 4.92446 0.269859
\(334\) 0 0
\(335\) 18.9370 1.03464
\(336\) 0 0
\(337\) 9.73440 0.530267 0.265133 0.964212i \(-0.414584\pi\)
0.265133 + 0.964212i \(0.414584\pi\)
\(338\) 0 0
\(339\) −8.85733 −0.481064
\(340\) 0 0
\(341\) −32.4987 −1.75990
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) −11.1559 −0.600616
\(346\) 0 0
\(347\) −3.90135 −0.209435 −0.104718 0.994502i \(-0.533394\pi\)
−0.104718 + 0.994502i \(0.533394\pi\)
\(348\) 0 0
\(349\) 3.55550 0.190322 0.0951608 0.995462i \(-0.469663\pi\)
0.0951608 + 0.995462i \(0.469663\pi\)
\(350\) 0 0
\(351\) −28.2586 −1.50833
\(352\) 0 0
\(353\) 2.90189 0.154452 0.0772261 0.997014i \(-0.475394\pi\)
0.0772261 + 0.997014i \(0.475394\pi\)
\(354\) 0 0
\(355\) 2.77587 0.147328
\(356\) 0 0
\(357\) −5.31881 −0.281501
\(358\) 0 0
\(359\) 1.40056 0.0739185 0.0369592 0.999317i \(-0.488233\pi\)
0.0369592 + 0.999317i \(0.488233\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 0.815926 0.0428250
\(364\) 0 0
\(365\) 0.146597 0.00767321
\(366\) 0 0
\(367\) 10.1574 0.530213 0.265106 0.964219i \(-0.414593\pi\)
0.265106 + 0.964219i \(0.414593\pi\)
\(368\) 0 0
\(369\) 17.0700 0.888626
\(370\) 0 0
\(371\) −6.50168 −0.337550
\(372\) 0 0
\(373\) 1.10281 0.0571012 0.0285506 0.999592i \(-0.490911\pi\)
0.0285506 + 0.999592i \(0.490911\pi\)
\(374\) 0 0
\(375\) −7.79064 −0.402307
\(376\) 0 0
\(377\) 64.4321 3.31842
\(378\) 0 0
\(379\) −18.6517 −0.958071 −0.479036 0.877795i \(-0.659014\pi\)
−0.479036 + 0.877795i \(0.659014\pi\)
\(380\) 0 0
\(381\) −1.06950 −0.0547923
\(382\) 0 0
\(383\) −3.13654 −0.160270 −0.0801348 0.996784i \(-0.525535\pi\)
−0.0801348 + 0.996784i \(0.525535\pi\)
\(384\) 0 0
\(385\) −8.68469 −0.442613
\(386\) 0 0
\(387\) −2.65074 −0.134745
\(388\) 0 0
\(389\) 33.4216 1.69454 0.847270 0.531162i \(-0.178244\pi\)
0.847270 + 0.531162i \(0.178244\pi\)
\(390\) 0 0
\(391\) −33.5983 −1.69914
\(392\) 0 0
\(393\) 6.77236 0.341620
\(394\) 0 0
\(395\) 41.5768 2.09196
\(396\) 0 0
\(397\) 10.9045 0.547283 0.273642 0.961832i \(-0.411772\pi\)
0.273642 + 0.961832i \(0.411772\pi\)
\(398\) 0 0
\(399\) −0.838827 −0.0419939
\(400\) 0 0
\(401\) 5.52313 0.275812 0.137906 0.990445i \(-0.455963\pi\)
0.137906 + 0.990445i \(0.455963\pi\)
\(402\) 0 0
\(403\) −59.7405 −2.97589
\(404\) 0 0
\(405\) 7.93738 0.394412
\(406\) 0 0
\(407\) −7.42016 −0.367804
\(408\) 0 0
\(409\) 14.7459 0.729137 0.364568 0.931177i \(-0.381217\pi\)
0.364568 + 0.931177i \(0.381217\pi\)
\(410\) 0 0
\(411\) 9.13264 0.450480
\(412\) 0 0
\(413\) −9.26281 −0.455793
\(414\) 0 0
\(415\) −14.0459 −0.689486
\(416\) 0 0
\(417\) −10.1937 −0.499188
\(418\) 0 0
\(419\) 16.1788 0.790386 0.395193 0.918598i \(-0.370678\pi\)
0.395193 + 0.918598i \(0.370678\pi\)
\(420\) 0 0
\(421\) −7.24074 −0.352892 −0.176446 0.984310i \(-0.556460\pi\)
−0.176446 + 0.984310i \(0.556460\pi\)
\(422\) 0 0
\(423\) −13.6998 −0.666108
\(424\) 0 0
\(425\) 8.24084 0.399739
\(426\) 0 0
\(427\) −7.12100 −0.344609
\(428\) 0 0
\(429\) 18.4615 0.891332
\(430\) 0 0
\(431\) −11.6634 −0.561807 −0.280903 0.959736i \(-0.590634\pi\)
−0.280903 + 0.959736i \(0.590634\pi\)
\(432\) 0 0
\(433\) 5.52522 0.265525 0.132762 0.991148i \(-0.457615\pi\)
0.132762 + 0.991148i \(0.457615\pi\)
\(434\) 0 0
\(435\) 21.3272 1.02256
\(436\) 0 0
\(437\) −5.29877 −0.253475
\(438\) 0 0
\(439\) 34.9712 1.66908 0.834542 0.550945i \(-0.185733\pi\)
0.834542 + 0.550945i \(0.185733\pi\)
\(440\) 0 0
\(441\) −2.29637 −0.109351
\(442\) 0 0
\(443\) 31.2216 1.48338 0.741691 0.670742i \(-0.234024\pi\)
0.741691 + 0.670742i \(0.234024\pi\)
\(444\) 0 0
\(445\) −37.2203 −1.76441
\(446\) 0 0
\(447\) −11.4068 −0.539521
\(448\) 0 0
\(449\) −10.5208 −0.496508 −0.248254 0.968695i \(-0.579857\pi\)
−0.248254 + 0.968695i \(0.579857\pi\)
\(450\) 0 0
\(451\) −25.7209 −1.21115
\(452\) 0 0
\(453\) −13.7589 −0.646448
\(454\) 0 0
\(455\) −15.9646 −0.748432
\(456\) 0 0
\(457\) 16.0833 0.752346 0.376173 0.926550i \(-0.377240\pi\)
0.376173 + 0.926550i \(0.377240\pi\)
\(458\) 0 0
\(459\) −28.1704 −1.31488
\(460\) 0 0
\(461\) 28.7877 1.34078 0.670388 0.742011i \(-0.266128\pi\)
0.670388 + 0.742011i \(0.266128\pi\)
\(462\) 0 0
\(463\) 17.7307 0.824017 0.412009 0.911180i \(-0.364827\pi\)
0.412009 + 0.911180i \(0.364827\pi\)
\(464\) 0 0
\(465\) −19.7743 −0.917011
\(466\) 0 0
\(467\) 28.9193 1.33823 0.669114 0.743160i \(-0.266674\pi\)
0.669114 + 0.743160i \(0.266674\pi\)
\(468\) 0 0
\(469\) −7.54487 −0.348390
\(470\) 0 0
\(471\) 14.4741 0.666932
\(472\) 0 0
\(473\) 3.99412 0.183650
\(474\) 0 0
\(475\) 1.29966 0.0596325
\(476\) 0 0
\(477\) −14.9303 −0.683609
\(478\) 0 0
\(479\) −39.4956 −1.80460 −0.902300 0.431109i \(-0.858122\pi\)
−0.902300 + 0.431109i \(0.858122\pi\)
\(480\) 0 0
\(481\) −13.6401 −0.621934
\(482\) 0 0
\(483\) 4.44476 0.202243
\(484\) 0 0
\(485\) −4.74491 −0.215455
\(486\) 0 0
\(487\) 2.43774 0.110464 0.0552322 0.998474i \(-0.482410\pi\)
0.0552322 + 0.998474i \(0.482410\pi\)
\(488\) 0 0
\(489\) −12.5815 −0.568954
\(490\) 0 0
\(491\) 28.5143 1.28683 0.643416 0.765516i \(-0.277516\pi\)
0.643416 + 0.765516i \(0.277516\pi\)
\(492\) 0 0
\(493\) 64.2310 2.89282
\(494\) 0 0
\(495\) −19.9433 −0.896383
\(496\) 0 0
\(497\) −1.10596 −0.0496093
\(498\) 0 0
\(499\) −24.7694 −1.10883 −0.554416 0.832240i \(-0.687058\pi\)
−0.554416 + 0.832240i \(0.687058\pi\)
\(500\) 0 0
\(501\) 3.60805 0.161196
\(502\) 0 0
\(503\) −25.3299 −1.12940 −0.564702 0.825295i \(-0.691009\pi\)
−0.564702 + 0.825295i \(0.691009\pi\)
\(504\) 0 0
\(505\) 9.03364 0.401992
\(506\) 0 0
\(507\) 23.0321 1.02289
\(508\) 0 0
\(509\) −27.6943 −1.22753 −0.613764 0.789490i \(-0.710345\pi\)
−0.613764 + 0.789490i \(0.710345\pi\)
\(510\) 0 0
\(511\) −0.0584070 −0.00258377
\(512\) 0 0
\(513\) −4.44274 −0.196152
\(514\) 0 0
\(515\) 23.3183 1.02753
\(516\) 0 0
\(517\) 20.6428 0.907871
\(518\) 0 0
\(519\) 20.4864 0.899253
\(520\) 0 0
\(521\) 13.6577 0.598353 0.299177 0.954198i \(-0.403288\pi\)
0.299177 + 0.954198i \(0.403288\pi\)
\(522\) 0 0
\(523\) 26.2806 1.14917 0.574586 0.818444i \(-0.305163\pi\)
0.574586 + 0.818444i \(0.305163\pi\)
\(524\) 0 0
\(525\) −1.09019 −0.0475798
\(526\) 0 0
\(527\) −59.5541 −2.59422
\(528\) 0 0
\(529\) 5.07700 0.220739
\(530\) 0 0
\(531\) −21.2708 −0.923075
\(532\) 0 0
\(533\) −47.2814 −2.04798
\(534\) 0 0
\(535\) −49.9362 −2.15893
\(536\) 0 0
\(537\) −7.14189 −0.308195
\(538\) 0 0
\(539\) 3.46016 0.149040
\(540\) 0 0
\(541\) −3.56729 −0.153370 −0.0766849 0.997055i \(-0.524434\pi\)
−0.0766849 + 0.997055i \(0.524434\pi\)
\(542\) 0 0
\(543\) 13.8810 0.595690
\(544\) 0 0
\(545\) −1.97615 −0.0846490
\(546\) 0 0
\(547\) −7.75085 −0.331402 −0.165701 0.986176i \(-0.552989\pi\)
−0.165701 + 0.986176i \(0.552989\pi\)
\(548\) 0 0
\(549\) −16.3524 −0.697905
\(550\) 0 0
\(551\) 10.1298 0.431546
\(552\) 0 0
\(553\) −16.5650 −0.704417
\(554\) 0 0
\(555\) −4.51490 −0.191647
\(556\) 0 0
\(557\) −0.922909 −0.0391049 −0.0195524 0.999809i \(-0.506224\pi\)
−0.0195524 + 0.999809i \(0.506224\pi\)
\(558\) 0 0
\(559\) 7.34217 0.310541
\(560\) 0 0
\(561\) 18.4039 0.777014
\(562\) 0 0
\(563\) −30.6656 −1.29240 −0.646201 0.763168i \(-0.723643\pi\)
−0.646201 + 0.763168i \(0.723643\pi\)
\(564\) 0 0
\(565\) −26.5026 −1.11497
\(566\) 0 0
\(567\) −3.16241 −0.132809
\(568\) 0 0
\(569\) −11.5203 −0.482955 −0.241477 0.970406i \(-0.577632\pi\)
−0.241477 + 0.970406i \(0.577632\pi\)
\(570\) 0 0
\(571\) 15.4530 0.646689 0.323344 0.946281i \(-0.395193\pi\)
0.323344 + 0.946281i \(0.395193\pi\)
\(572\) 0 0
\(573\) −13.1105 −0.547701
\(574\) 0 0
\(575\) −6.88660 −0.287191
\(576\) 0 0
\(577\) −39.0625 −1.62619 −0.813097 0.582128i \(-0.802220\pi\)
−0.813097 + 0.582128i \(0.802220\pi\)
\(578\) 0 0
\(579\) −11.3165 −0.470296
\(580\) 0 0
\(581\) 5.59617 0.232168
\(582\) 0 0
\(583\) 22.4968 0.931724
\(584\) 0 0
\(585\) −36.6606 −1.51573
\(586\) 0 0
\(587\) 23.2106 0.958003 0.479001 0.877814i \(-0.340999\pi\)
0.479001 + 0.877814i \(0.340999\pi\)
\(588\) 0 0
\(589\) −9.39225 −0.387001
\(590\) 0 0
\(591\) −11.1708 −0.459507
\(592\) 0 0
\(593\) −25.4167 −1.04374 −0.521870 0.853025i \(-0.674765\pi\)
−0.521870 + 0.853025i \(0.674765\pi\)
\(594\) 0 0
\(595\) −15.9148 −0.652442
\(596\) 0 0
\(597\) 7.18623 0.294113
\(598\) 0 0
\(599\) −47.0201 −1.92119 −0.960594 0.277955i \(-0.910343\pi\)
−0.960594 + 0.277955i \(0.910343\pi\)
\(600\) 0 0
\(601\) −5.46252 −0.222821 −0.111410 0.993774i \(-0.535537\pi\)
−0.111410 + 0.993774i \(0.535537\pi\)
\(602\) 0 0
\(603\) −17.3258 −0.705562
\(604\) 0 0
\(605\) 2.44139 0.0992565
\(606\) 0 0
\(607\) 12.7810 0.518766 0.259383 0.965775i \(-0.416481\pi\)
0.259383 + 0.965775i \(0.416481\pi\)
\(608\) 0 0
\(609\) −8.49719 −0.344324
\(610\) 0 0
\(611\) 37.9466 1.53515
\(612\) 0 0
\(613\) 10.8772 0.439328 0.219664 0.975576i \(-0.429504\pi\)
0.219664 + 0.975576i \(0.429504\pi\)
\(614\) 0 0
\(615\) −15.6503 −0.631080
\(616\) 0 0
\(617\) −38.7821 −1.56131 −0.780655 0.624962i \(-0.785114\pi\)
−0.780655 + 0.624962i \(0.785114\pi\)
\(618\) 0 0
\(619\) −24.9373 −1.00232 −0.501158 0.865356i \(-0.667092\pi\)
−0.501158 + 0.865356i \(0.667092\pi\)
\(620\) 0 0
\(621\) 23.5411 0.944671
\(622\) 0 0
\(623\) 14.8293 0.594125
\(624\) 0 0
\(625\) −29.8092 −1.19237
\(626\) 0 0
\(627\) 2.90248 0.115914
\(628\) 0 0
\(629\) −13.5975 −0.542168
\(630\) 0 0
\(631\) 45.7661 1.82192 0.910959 0.412496i \(-0.135343\pi\)
0.910959 + 0.412496i \(0.135343\pi\)
\(632\) 0 0
\(633\) −7.60734 −0.302364
\(634\) 0 0
\(635\) −3.20013 −0.126993
\(636\) 0 0
\(637\) 6.36062 0.252017
\(638\) 0 0
\(639\) −2.53970 −0.100469
\(640\) 0 0
\(641\) 34.7497 1.37253 0.686265 0.727351i \(-0.259249\pi\)
0.686265 + 0.727351i \(0.259249\pi\)
\(642\) 0 0
\(643\) −12.0973 −0.477070 −0.238535 0.971134i \(-0.576667\pi\)
−0.238535 + 0.971134i \(0.576667\pi\)
\(644\) 0 0
\(645\) 2.43028 0.0956922
\(646\) 0 0
\(647\) −40.1375 −1.57797 −0.788985 0.614413i \(-0.789393\pi\)
−0.788985 + 0.614413i \(0.789393\pi\)
\(648\) 0 0
\(649\) 32.0508 1.25810
\(650\) 0 0
\(651\) 7.87848 0.308782
\(652\) 0 0
\(653\) 26.1580 1.02364 0.511820 0.859093i \(-0.328971\pi\)
0.511820 + 0.859093i \(0.328971\pi\)
\(654\) 0 0
\(655\) 20.2640 0.791782
\(656\) 0 0
\(657\) −0.134124 −0.00523268
\(658\) 0 0
\(659\) 32.5535 1.26810 0.634052 0.773290i \(-0.281390\pi\)
0.634052 + 0.773290i \(0.281390\pi\)
\(660\) 0 0
\(661\) 12.6399 0.491634 0.245817 0.969316i \(-0.420944\pi\)
0.245817 + 0.969316i \(0.420944\pi\)
\(662\) 0 0
\(663\) 33.8309 1.31388
\(664\) 0 0
\(665\) −2.50991 −0.0973302
\(666\) 0 0
\(667\) −53.6757 −2.07833
\(668\) 0 0
\(669\) −2.05459 −0.0794350
\(670\) 0 0
\(671\) 24.6398 0.951209
\(672\) 0 0
\(673\) 12.2360 0.471665 0.235832 0.971794i \(-0.424218\pi\)
0.235832 + 0.971794i \(0.424218\pi\)
\(674\) 0 0
\(675\) −5.77405 −0.222243
\(676\) 0 0
\(677\) 33.7535 1.29725 0.648626 0.761107i \(-0.275344\pi\)
0.648626 + 0.761107i \(0.275344\pi\)
\(678\) 0 0
\(679\) 1.89047 0.0725496
\(680\) 0 0
\(681\) 9.65707 0.370060
\(682\) 0 0
\(683\) −13.4124 −0.513212 −0.256606 0.966516i \(-0.582604\pi\)
−0.256606 + 0.966516i \(0.582604\pi\)
\(684\) 0 0
\(685\) 27.3264 1.04409
\(686\) 0 0
\(687\) 7.34864 0.280368
\(688\) 0 0
\(689\) 41.3547 1.57549
\(690\) 0 0
\(691\) −12.6257 −0.480304 −0.240152 0.970735i \(-0.577197\pi\)
−0.240152 + 0.970735i \(0.577197\pi\)
\(692\) 0 0
\(693\) 7.94580 0.301836
\(694\) 0 0
\(695\) −30.5013 −1.15698
\(696\) 0 0
\(697\) −47.1338 −1.78532
\(698\) 0 0
\(699\) 8.51902 0.322219
\(700\) 0 0
\(701\) −0.500105 −0.0188887 −0.00944435 0.999955i \(-0.503006\pi\)
−0.00944435 + 0.999955i \(0.503006\pi\)
\(702\) 0 0
\(703\) −2.14446 −0.0808797
\(704\) 0 0
\(705\) 12.5604 0.473053
\(706\) 0 0
\(707\) −3.59919 −0.135361
\(708\) 0 0
\(709\) 3.59561 0.135036 0.0675180 0.997718i \(-0.478492\pi\)
0.0675180 + 0.997718i \(0.478492\pi\)
\(710\) 0 0
\(711\) −38.0394 −1.42659
\(712\) 0 0
\(713\) 49.7674 1.86380
\(714\) 0 0
\(715\) 55.2400 2.06586
\(716\) 0 0
\(717\) −13.7919 −0.515069
\(718\) 0 0
\(719\) 16.2473 0.605923 0.302961 0.953003i \(-0.402025\pi\)
0.302961 + 0.953003i \(0.402025\pi\)
\(720\) 0 0
\(721\) −9.29050 −0.345996
\(722\) 0 0
\(723\) −4.28625 −0.159407
\(724\) 0 0
\(725\) 13.1653 0.488949
\(726\) 0 0
\(727\) −13.4012 −0.497022 −0.248511 0.968629i \(-0.579941\pi\)
−0.248511 + 0.968629i \(0.579941\pi\)
\(728\) 0 0
\(729\) 3.91801 0.145111
\(730\) 0 0
\(731\) 7.31926 0.270713
\(732\) 0 0
\(733\) −9.33243 −0.344701 −0.172351 0.985036i \(-0.555136\pi\)
−0.172351 + 0.985036i \(0.555136\pi\)
\(734\) 0 0
\(735\) 2.10538 0.0776582
\(736\) 0 0
\(737\) 26.1065 0.961644
\(738\) 0 0
\(739\) −10.7733 −0.396303 −0.198151 0.980171i \(-0.563494\pi\)
−0.198151 + 0.980171i \(0.563494\pi\)
\(740\) 0 0
\(741\) 5.33546 0.196003
\(742\) 0 0
\(743\) −51.2919 −1.88172 −0.940859 0.338797i \(-0.889980\pi\)
−0.940859 + 0.338797i \(0.889980\pi\)
\(744\) 0 0
\(745\) −34.1309 −1.25046
\(746\) 0 0
\(747\) 12.8509 0.470189
\(748\) 0 0
\(749\) 19.8956 0.726970
\(750\) 0 0
\(751\) 1.58651 0.0578926 0.0289463 0.999581i \(-0.490785\pi\)
0.0289463 + 0.999581i \(0.490785\pi\)
\(752\) 0 0
\(753\) −5.72767 −0.208728
\(754\) 0 0
\(755\) −41.1689 −1.49829
\(756\) 0 0
\(757\) −3.36632 −0.122351 −0.0611755 0.998127i \(-0.519485\pi\)
−0.0611755 + 0.998127i \(0.519485\pi\)
\(758\) 0 0
\(759\) −15.3796 −0.558243
\(760\) 0 0
\(761\) −10.5896 −0.383874 −0.191937 0.981407i \(-0.561477\pi\)
−0.191937 + 0.981407i \(0.561477\pi\)
\(762\) 0 0
\(763\) 0.787338 0.0285036
\(764\) 0 0
\(765\) −36.5462 −1.32133
\(766\) 0 0
\(767\) 58.9172 2.12738
\(768\) 0 0
\(769\) 25.9476 0.935695 0.467847 0.883809i \(-0.345030\pi\)
0.467847 + 0.883809i \(0.345030\pi\)
\(770\) 0 0
\(771\) −11.1103 −0.400127
\(772\) 0 0
\(773\) −5.86293 −0.210875 −0.105438 0.994426i \(-0.533624\pi\)
−0.105438 + 0.994426i \(0.533624\pi\)
\(774\) 0 0
\(775\) −12.2067 −0.438479
\(776\) 0 0
\(777\) 1.79883 0.0645326
\(778\) 0 0
\(779\) −7.43345 −0.266331
\(780\) 0 0
\(781\) 3.82681 0.136934
\(782\) 0 0
\(783\) −45.0042 −1.60832
\(784\) 0 0
\(785\) 43.3090 1.54576
\(786\) 0 0
\(787\) 26.0191 0.927480 0.463740 0.885971i \(-0.346507\pi\)
0.463740 + 0.885971i \(0.346507\pi\)
\(788\) 0 0
\(789\) 1.00549 0.0357963
\(790\) 0 0
\(791\) 10.5592 0.375441
\(792\) 0 0
\(793\) 45.2940 1.60844
\(794\) 0 0
\(795\) 13.6885 0.485482
\(796\) 0 0
\(797\) −4.96085 −0.175722 −0.0878611 0.996133i \(-0.528003\pi\)
−0.0878611 + 0.996133i \(0.528003\pi\)
\(798\) 0 0
\(799\) 37.8282 1.33826
\(800\) 0 0
\(801\) 34.0536 1.20323
\(802\) 0 0
\(803\) 0.202098 0.00713187
\(804\) 0 0
\(805\) 13.2995 0.468744
\(806\) 0 0
\(807\) 24.4032 0.859032
\(808\) 0 0
\(809\) −36.8839 −1.29677 −0.648385 0.761313i \(-0.724555\pi\)
−0.648385 + 0.761313i \(0.724555\pi\)
\(810\) 0 0
\(811\) −46.2723 −1.62484 −0.812421 0.583072i \(-0.801851\pi\)
−0.812421 + 0.583072i \(0.801851\pi\)
\(812\) 0 0
\(813\) 10.6545 0.373670
\(814\) 0 0
\(815\) −37.6459 −1.31868
\(816\) 0 0
\(817\) 1.15432 0.0403844
\(818\) 0 0
\(819\) 14.6063 0.510386
\(820\) 0 0
\(821\) −35.3927 −1.23521 −0.617607 0.786487i \(-0.711898\pi\)
−0.617607 + 0.786487i \(0.711898\pi\)
\(822\) 0 0
\(823\) −11.4699 −0.399815 −0.199907 0.979815i \(-0.564064\pi\)
−0.199907 + 0.979815i \(0.564064\pi\)
\(824\) 0 0
\(825\) 3.77223 0.131332
\(826\) 0 0
\(827\) −22.4282 −0.779905 −0.389953 0.920835i \(-0.627509\pi\)
−0.389953 + 0.920835i \(0.627509\pi\)
\(828\) 0 0
\(829\) 53.8294 1.86957 0.934786 0.355211i \(-0.115591\pi\)
0.934786 + 0.355211i \(0.115591\pi\)
\(830\) 0 0
\(831\) −6.69504 −0.232248
\(832\) 0 0
\(833\) 6.34077 0.219695
\(834\) 0 0
\(835\) 10.7959 0.373608
\(836\) 0 0
\(837\) 41.7273 1.44231
\(838\) 0 0
\(839\) 1.60165 0.0552952 0.0276476 0.999618i \(-0.491198\pi\)
0.0276476 + 0.999618i \(0.491198\pi\)
\(840\) 0 0
\(841\) 73.6137 2.53840
\(842\) 0 0
\(843\) 17.1195 0.589627
\(844\) 0 0
\(845\) 68.9158 2.37078
\(846\) 0 0
\(847\) −0.972699 −0.0334223
\(848\) 0 0
\(849\) 15.9314 0.546765
\(850\) 0 0
\(851\) 11.3630 0.389518
\(852\) 0 0
\(853\) −37.7120 −1.29123 −0.645617 0.763662i \(-0.723400\pi\)
−0.645617 + 0.763662i \(0.723400\pi\)
\(854\) 0 0
\(855\) −5.76368 −0.197114
\(856\) 0 0
\(857\) 28.3095 0.967035 0.483517 0.875335i \(-0.339359\pi\)
0.483517 + 0.875335i \(0.339359\pi\)
\(858\) 0 0
\(859\) 3.40350 0.116126 0.0580629 0.998313i \(-0.481508\pi\)
0.0580629 + 0.998313i \(0.481508\pi\)
\(860\) 0 0
\(861\) 6.23539 0.212501
\(862\) 0 0
\(863\) 14.3494 0.488458 0.244229 0.969718i \(-0.421465\pi\)
0.244229 + 0.969718i \(0.421465\pi\)
\(864\) 0 0
\(865\) 61.2987 2.08422
\(866\) 0 0
\(867\) 19.4653 0.661076
\(868\) 0 0
\(869\) 57.3177 1.94437
\(870\) 0 0
\(871\) 47.9901 1.62608
\(872\) 0 0
\(873\) 4.34122 0.146928
\(874\) 0 0
\(875\) 9.28753 0.313976
\(876\) 0 0
\(877\) −41.1281 −1.38880 −0.694398 0.719591i \(-0.744329\pi\)
−0.694398 + 0.719591i \(0.744329\pi\)
\(878\) 0 0
\(879\) −16.1667 −0.545291
\(880\) 0 0
\(881\) −14.2298 −0.479416 −0.239708 0.970845i \(-0.577052\pi\)
−0.239708 + 0.970845i \(0.577052\pi\)
\(882\) 0 0
\(883\) 35.2550 1.18643 0.593213 0.805046i \(-0.297859\pi\)
0.593213 + 0.805046i \(0.297859\pi\)
\(884\) 0 0
\(885\) 19.5018 0.655545
\(886\) 0 0
\(887\) −30.0916 −1.01038 −0.505189 0.863009i \(-0.668577\pi\)
−0.505189 + 0.863009i \(0.668577\pi\)
\(888\) 0 0
\(889\) 1.27500 0.0427620
\(890\) 0 0
\(891\) 10.9425 0.366586
\(892\) 0 0
\(893\) 5.96586 0.199640
\(894\) 0 0
\(895\) −21.3697 −0.714312
\(896\) 0 0
\(897\) −28.2714 −0.943954
\(898\) 0 0
\(899\) −95.1421 −3.17317
\(900\) 0 0
\(901\) 41.2257 1.37343
\(902\) 0 0
\(903\) −0.968273 −0.0322221
\(904\) 0 0
\(905\) 41.5342 1.38064
\(906\) 0 0
\(907\) 49.2512 1.63536 0.817680 0.575674i \(-0.195260\pi\)
0.817680 + 0.575674i \(0.195260\pi\)
\(908\) 0 0
\(909\) −8.26506 −0.274135
\(910\) 0 0
\(911\) −40.2177 −1.33247 −0.666236 0.745741i \(-0.732096\pi\)
−0.666236 + 0.745741i \(0.732096\pi\)
\(912\) 0 0
\(913\) −19.3637 −0.640843
\(914\) 0 0
\(915\) 14.9924 0.495635
\(916\) 0 0
\(917\) −8.07361 −0.266614
\(918\) 0 0
\(919\) −35.3387 −1.16572 −0.582859 0.812573i \(-0.698066\pi\)
−0.582859 + 0.812573i \(0.698066\pi\)
\(920\) 0 0
\(921\) −7.35754 −0.242439
\(922\) 0 0
\(923\) 7.03462 0.231547
\(924\) 0 0
\(925\) −2.78706 −0.0916380
\(926\) 0 0
\(927\) −21.3344 −0.700714
\(928\) 0 0
\(929\) −37.5422 −1.23172 −0.615860 0.787856i \(-0.711191\pi\)
−0.615860 + 0.787856i \(0.711191\pi\)
\(930\) 0 0
\(931\) 1.00000 0.0327737
\(932\) 0 0
\(933\) 4.60981 0.150918
\(934\) 0 0
\(935\) 55.0676 1.80090
\(936\) 0 0
\(937\) −33.3138 −1.08831 −0.544157 0.838983i \(-0.683150\pi\)
−0.544157 + 0.838983i \(0.683150\pi\)
\(938\) 0 0
\(939\) −21.2101 −0.692165
\(940\) 0 0
\(941\) −51.7592 −1.68730 −0.843650 0.536893i \(-0.819598\pi\)
−0.843650 + 0.536893i \(0.819598\pi\)
\(942\) 0 0
\(943\) 39.3882 1.28266
\(944\) 0 0
\(945\) 11.1509 0.362738
\(946\) 0 0
\(947\) −33.8775 −1.10087 −0.550435 0.834878i \(-0.685538\pi\)
−0.550435 + 0.834878i \(0.685538\pi\)
\(948\) 0 0
\(949\) 0.371505 0.0120596
\(950\) 0 0
\(951\) 5.44828 0.176673
\(952\) 0 0
\(953\) −55.7038 −1.80442 −0.902211 0.431295i \(-0.858057\pi\)
−0.902211 + 0.431295i \(0.858057\pi\)
\(954\) 0 0
\(955\) −39.2289 −1.26942
\(956\) 0 0
\(957\) 29.4016 0.950420
\(958\) 0 0
\(959\) −10.8874 −0.351572
\(960\) 0 0
\(961\) 57.2144 1.84563
\(962\) 0 0
\(963\) 45.6876 1.47226
\(964\) 0 0
\(965\) −33.8607 −1.09002
\(966\) 0 0
\(967\) −2.96518 −0.0953536 −0.0476768 0.998863i \(-0.515182\pi\)
−0.0476768 + 0.998863i \(0.515182\pi\)
\(968\) 0 0
\(969\) 5.31881 0.170865
\(970\) 0 0
\(971\) −1.53029 −0.0491093 −0.0245547 0.999698i \(-0.507817\pi\)
−0.0245547 + 0.999698i \(0.507817\pi\)
\(972\) 0 0
\(973\) 12.1523 0.389586
\(974\) 0 0
\(975\) 6.93428 0.222075
\(976\) 0 0
\(977\) −23.1611 −0.740988 −0.370494 0.928835i \(-0.620812\pi\)
−0.370494 + 0.928835i \(0.620812\pi\)
\(978\) 0 0
\(979\) −51.3119 −1.63993
\(980\) 0 0
\(981\) 1.80802 0.0577256
\(982\) 0 0
\(983\) −53.1318 −1.69464 −0.847320 0.531082i \(-0.821786\pi\)
−0.847320 + 0.531082i \(0.821786\pi\)
\(984\) 0 0
\(985\) −33.4250 −1.06501
\(986\) 0 0
\(987\) −5.00433 −0.159290
\(988\) 0 0
\(989\) −6.11646 −0.194492
\(990\) 0 0
\(991\) 35.2726 1.12047 0.560236 0.828333i \(-0.310711\pi\)
0.560236 + 0.828333i \(0.310711\pi\)
\(992\) 0 0
\(993\) 10.2236 0.324438
\(994\) 0 0
\(995\) 21.5024 0.681672
\(996\) 0 0
\(997\) −39.2627 −1.24346 −0.621731 0.783230i \(-0.713570\pi\)
−0.621731 + 0.783230i \(0.713570\pi\)
\(998\) 0 0
\(999\) 9.52726 0.301429
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8512.2.a.ch.1.6 7
4.3 odd 2 8512.2.a.ci.1.2 7
8.3 odd 2 4256.2.a.p.1.6 7
8.5 even 2 4256.2.a.q.1.2 yes 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4256.2.a.p.1.6 7 8.3 odd 2
4256.2.a.q.1.2 yes 7 8.5 even 2
8512.2.a.ch.1.6 7 1.1 even 1 trivial
8512.2.a.ci.1.2 7 4.3 odd 2