Properties

Label 850.2.y
Level $850$
Weight $2$
Character orbit 850.y
Rep. character $\chi_{850}(21,\cdot)$
Character field $\Q(\zeta_{20})$
Dimension $368$
Newform subspaces $2$
Sturm bound $270$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 850 = 2 \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 850.y (of order \(20\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 425 \)
Character field: \(\Q(\zeta_{20})\)
Newform subspaces: \( 2 \)
Sturm bound: \(270\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(850, [\chi])\).

Total New Old
Modular forms 1104 368 736
Cusp forms 1040 368 672
Eisenstein series 64 0 64

Trace form

\( 368 q + 92 q^{4} - 2 q^{5} + 8 q^{7} - 6 q^{10} + 12 q^{11} + 16 q^{13} - 92 q^{16} + 4 q^{17} - 80 q^{18} + 12 q^{20} - 32 q^{21} - 24 q^{22} - 12 q^{23} - 60 q^{27} - 8 q^{28} - 12 q^{29} + 24 q^{33}+ \cdots - 40 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(850, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
850.2.y.a 850.y 425.ab $176$ $6.787$ None 850.2.y.a \(0\) \(0\) \(-4\) \(4\) $\mathrm{SU}(2)[C_{20}]$
850.2.y.b 850.y 425.ab $192$ $6.787$ None 850.2.y.b \(0\) \(0\) \(2\) \(4\) $\mathrm{SU}(2)[C_{20}]$

Decomposition of \(S_{2}^{\mathrm{old}}(850, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(850, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(425, [\chi])\)\(^{\oplus 2}\)