Properties

Label 85.4.b
Level $85$
Weight $4$
Character orbit 85.b
Rep. character $\chi_{85}(69,\cdot)$
Character field $\Q$
Dimension $24$
Newform subspaces $1$
Sturm bound $36$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 85 = 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 85.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(36\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(85, [\chi])\).

Total New Old
Modular forms 28 24 4
Cusp forms 24 24 0
Eisenstein series 4 0 4

Trace form

\( 24 q - 96 q^{4} - 8 q^{5} + 16 q^{6} - 180 q^{9} - 42 q^{10} + 60 q^{11} - 76 q^{14} + 124 q^{15} + 240 q^{16} + 100 q^{19} - 82 q^{20} - 128 q^{21} + 204 q^{24} + 124 q^{25} - 100 q^{26} - 464 q^{29} - 108 q^{30}+ \cdots - 1228 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(85, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
85.4.b.a 85.b 5.b $24$ $5.015$ None 85.4.b.a \(0\) \(0\) \(-8\) \(0\) $\mathrm{SU}(2)[C_{2}]$