Properties

Label 840.4.a.f.1.1
Level $840$
Weight $4$
Character 840.1
Self dual yes
Analytic conductor $49.562$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [840,4,Mod(1,840)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("840.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(840, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 840.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,0,3,0,5,0,7,0,9,0,-16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(49.5616044048\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 840.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.00000 q^{3} +5.00000 q^{5} +7.00000 q^{7} +9.00000 q^{9} -16.0000 q^{11} -62.0000 q^{13} +15.0000 q^{15} -14.0000 q^{17} -56.0000 q^{19} +21.0000 q^{21} -136.000 q^{23} +25.0000 q^{25} +27.0000 q^{27} -154.000 q^{29} -116.000 q^{31} -48.0000 q^{33} +35.0000 q^{35} +6.00000 q^{37} -186.000 q^{39} -150.000 q^{41} -20.0000 q^{43} +45.0000 q^{45} +152.000 q^{47} +49.0000 q^{49} -42.0000 q^{51} -78.0000 q^{53} -80.0000 q^{55} -168.000 q^{57} +124.000 q^{59} +166.000 q^{61} +63.0000 q^{63} -310.000 q^{65} +140.000 q^{67} -408.000 q^{69} +204.000 q^{71} -210.000 q^{73} +75.0000 q^{75} -112.000 q^{77} -984.000 q^{79} +81.0000 q^{81} +628.000 q^{83} -70.0000 q^{85} -462.000 q^{87} +138.000 q^{89} -434.000 q^{91} -348.000 q^{93} -280.000 q^{95} -1202.00 q^{97} -144.000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.00000 0.577350
\(4\) 0 0
\(5\) 5.00000 0.447214
\(6\) 0 0
\(7\) 7.00000 0.377964
\(8\) 0 0
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) −16.0000 −0.438562 −0.219281 0.975662i \(-0.570371\pi\)
−0.219281 + 0.975662i \(0.570371\pi\)
\(12\) 0 0
\(13\) −62.0000 −1.32275 −0.661373 0.750057i \(-0.730026\pi\)
−0.661373 + 0.750057i \(0.730026\pi\)
\(14\) 0 0
\(15\) 15.0000 0.258199
\(16\) 0 0
\(17\) −14.0000 −0.199735 −0.0998676 0.995001i \(-0.531842\pi\)
−0.0998676 + 0.995001i \(0.531842\pi\)
\(18\) 0 0
\(19\) −56.0000 −0.676173 −0.338086 0.941115i \(-0.609780\pi\)
−0.338086 + 0.941115i \(0.609780\pi\)
\(20\) 0 0
\(21\) 21.0000 0.218218
\(22\) 0 0
\(23\) −136.000 −1.23295 −0.616477 0.787373i \(-0.711441\pi\)
−0.616477 + 0.787373i \(0.711441\pi\)
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) 0 0
\(27\) 27.0000 0.192450
\(28\) 0 0
\(29\) −154.000 −0.986106 −0.493053 0.869999i \(-0.664119\pi\)
−0.493053 + 0.869999i \(0.664119\pi\)
\(30\) 0 0
\(31\) −116.000 −0.672071 −0.336036 0.941849i \(-0.609086\pi\)
−0.336036 + 0.941849i \(0.609086\pi\)
\(32\) 0 0
\(33\) −48.0000 −0.253204
\(34\) 0 0
\(35\) 35.0000 0.169031
\(36\) 0 0
\(37\) 6.00000 0.0266593 0.0133296 0.999911i \(-0.495757\pi\)
0.0133296 + 0.999911i \(0.495757\pi\)
\(38\) 0 0
\(39\) −186.000 −0.763688
\(40\) 0 0
\(41\) −150.000 −0.571367 −0.285684 0.958324i \(-0.592221\pi\)
−0.285684 + 0.958324i \(0.592221\pi\)
\(42\) 0 0
\(43\) −20.0000 −0.0709296 −0.0354648 0.999371i \(-0.511291\pi\)
−0.0354648 + 0.999371i \(0.511291\pi\)
\(44\) 0 0
\(45\) 45.0000 0.149071
\(46\) 0 0
\(47\) 152.000 0.471734 0.235867 0.971785i \(-0.424207\pi\)
0.235867 + 0.971785i \(0.424207\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) 0 0
\(51\) −42.0000 −0.115317
\(52\) 0 0
\(53\) −78.0000 −0.202153 −0.101077 0.994879i \(-0.532229\pi\)
−0.101077 + 0.994879i \(0.532229\pi\)
\(54\) 0 0
\(55\) −80.0000 −0.196131
\(56\) 0 0
\(57\) −168.000 −0.390388
\(58\) 0 0
\(59\) 124.000 0.273617 0.136809 0.990597i \(-0.456315\pi\)
0.136809 + 0.990597i \(0.456315\pi\)
\(60\) 0 0
\(61\) 166.000 0.348428 0.174214 0.984708i \(-0.444262\pi\)
0.174214 + 0.984708i \(0.444262\pi\)
\(62\) 0 0
\(63\) 63.0000 0.125988
\(64\) 0 0
\(65\) −310.000 −0.591550
\(66\) 0 0
\(67\) 140.000 0.255279 0.127640 0.991821i \(-0.459260\pi\)
0.127640 + 0.991821i \(0.459260\pi\)
\(68\) 0 0
\(69\) −408.000 −0.711847
\(70\) 0 0
\(71\) 204.000 0.340991 0.170495 0.985358i \(-0.445463\pi\)
0.170495 + 0.985358i \(0.445463\pi\)
\(72\) 0 0
\(73\) −210.000 −0.336694 −0.168347 0.985728i \(-0.553843\pi\)
−0.168347 + 0.985728i \(0.553843\pi\)
\(74\) 0 0
\(75\) 75.0000 0.115470
\(76\) 0 0
\(77\) −112.000 −0.165761
\(78\) 0 0
\(79\) −984.000 −1.40138 −0.700688 0.713468i \(-0.747123\pi\)
−0.700688 + 0.713468i \(0.747123\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) 628.000 0.830505 0.415253 0.909706i \(-0.363693\pi\)
0.415253 + 0.909706i \(0.363693\pi\)
\(84\) 0 0
\(85\) −70.0000 −0.0893243
\(86\) 0 0
\(87\) −462.000 −0.569329
\(88\) 0 0
\(89\) 138.000 0.164359 0.0821796 0.996618i \(-0.473812\pi\)
0.0821796 + 0.996618i \(0.473812\pi\)
\(90\) 0 0
\(91\) −434.000 −0.499951
\(92\) 0 0
\(93\) −348.000 −0.388021
\(94\) 0 0
\(95\) −280.000 −0.302394
\(96\) 0 0
\(97\) −1202.00 −1.25819 −0.629096 0.777328i \(-0.716575\pi\)
−0.629096 + 0.777328i \(0.716575\pi\)
\(98\) 0 0
\(99\) −144.000 −0.146187
\(100\) 0 0
\(101\) 270.000 0.266000 0.133000 0.991116i \(-0.457539\pi\)
0.133000 + 0.991116i \(0.457539\pi\)
\(102\) 0 0
\(103\) −488.000 −0.466836 −0.233418 0.972377i \(-0.574991\pi\)
−0.233418 + 0.972377i \(0.574991\pi\)
\(104\) 0 0
\(105\) 105.000 0.0975900
\(106\) 0 0
\(107\) −1092.00 −0.986613 −0.493307 0.869855i \(-0.664212\pi\)
−0.493307 + 0.869855i \(0.664212\pi\)
\(108\) 0 0
\(109\) 1910.00 1.67839 0.839196 0.543828i \(-0.183026\pi\)
0.839196 + 0.543828i \(0.183026\pi\)
\(110\) 0 0
\(111\) 18.0000 0.0153918
\(112\) 0 0
\(113\) −1002.00 −0.834161 −0.417081 0.908869i \(-0.636947\pi\)
−0.417081 + 0.908869i \(0.636947\pi\)
\(114\) 0 0
\(115\) −680.000 −0.551394
\(116\) 0 0
\(117\) −558.000 −0.440916
\(118\) 0 0
\(119\) −98.0000 −0.0754928
\(120\) 0 0
\(121\) −1075.00 −0.807663
\(122\) 0 0
\(123\) −450.000 −0.329879
\(124\) 0 0
\(125\) 125.000 0.0894427
\(126\) 0 0
\(127\) 984.000 0.687527 0.343763 0.939056i \(-0.388298\pi\)
0.343763 + 0.939056i \(0.388298\pi\)
\(128\) 0 0
\(129\) −60.0000 −0.0409512
\(130\) 0 0
\(131\) −84.0000 −0.0560238 −0.0280119 0.999608i \(-0.508918\pi\)
−0.0280119 + 0.999608i \(0.508918\pi\)
\(132\) 0 0
\(133\) −392.000 −0.255569
\(134\) 0 0
\(135\) 135.000 0.0860663
\(136\) 0 0
\(137\) 566.000 0.352968 0.176484 0.984303i \(-0.443528\pi\)
0.176484 + 0.984303i \(0.443528\pi\)
\(138\) 0 0
\(139\) 864.000 0.527220 0.263610 0.964629i \(-0.415087\pi\)
0.263610 + 0.964629i \(0.415087\pi\)
\(140\) 0 0
\(141\) 456.000 0.272356
\(142\) 0 0
\(143\) 992.000 0.580106
\(144\) 0 0
\(145\) −770.000 −0.441000
\(146\) 0 0
\(147\) 147.000 0.0824786
\(148\) 0 0
\(149\) −1274.00 −0.700471 −0.350235 0.936662i \(-0.613898\pi\)
−0.350235 + 0.936662i \(0.613898\pi\)
\(150\) 0 0
\(151\) −952.000 −0.513064 −0.256532 0.966536i \(-0.582580\pi\)
−0.256532 + 0.966536i \(0.582580\pi\)
\(152\) 0 0
\(153\) −126.000 −0.0665784
\(154\) 0 0
\(155\) −580.000 −0.300559
\(156\) 0 0
\(157\) −2342.00 −1.19052 −0.595261 0.803532i \(-0.702951\pi\)
−0.595261 + 0.803532i \(0.702951\pi\)
\(158\) 0 0
\(159\) −234.000 −0.116713
\(160\) 0 0
\(161\) −952.000 −0.466013
\(162\) 0 0
\(163\) 3460.00 1.66263 0.831313 0.555804i \(-0.187590\pi\)
0.831313 + 0.555804i \(0.187590\pi\)
\(164\) 0 0
\(165\) −240.000 −0.113236
\(166\) 0 0
\(167\) 600.000 0.278020 0.139010 0.990291i \(-0.455608\pi\)
0.139010 + 0.990291i \(0.455608\pi\)
\(168\) 0 0
\(169\) 1647.00 0.749659
\(170\) 0 0
\(171\) −504.000 −0.225391
\(172\) 0 0
\(173\) −1970.00 −0.865759 −0.432880 0.901452i \(-0.642502\pi\)
−0.432880 + 0.901452i \(0.642502\pi\)
\(174\) 0 0
\(175\) 175.000 0.0755929
\(176\) 0 0
\(177\) 372.000 0.157973
\(178\) 0 0
\(179\) 1480.00 0.617991 0.308996 0.951063i \(-0.400007\pi\)
0.308996 + 0.951063i \(0.400007\pi\)
\(180\) 0 0
\(181\) −4522.00 −1.85700 −0.928502 0.371328i \(-0.878902\pi\)
−0.928502 + 0.371328i \(0.878902\pi\)
\(182\) 0 0
\(183\) 498.000 0.201165
\(184\) 0 0
\(185\) 30.0000 0.0119224
\(186\) 0 0
\(187\) 224.000 0.0875963
\(188\) 0 0
\(189\) 189.000 0.0727393
\(190\) 0 0
\(191\) 1468.00 0.556130 0.278065 0.960562i \(-0.410307\pi\)
0.278065 + 0.960562i \(0.410307\pi\)
\(192\) 0 0
\(193\) −3662.00 −1.36579 −0.682893 0.730519i \(-0.739278\pi\)
−0.682893 + 0.730519i \(0.739278\pi\)
\(194\) 0 0
\(195\) −930.000 −0.341532
\(196\) 0 0
\(197\) −1798.00 −0.650265 −0.325132 0.945668i \(-0.605409\pi\)
−0.325132 + 0.945668i \(0.605409\pi\)
\(198\) 0 0
\(199\) −460.000 −0.163862 −0.0819310 0.996638i \(-0.526109\pi\)
−0.0819310 + 0.996638i \(0.526109\pi\)
\(200\) 0 0
\(201\) 420.000 0.147386
\(202\) 0 0
\(203\) −1078.00 −0.372713
\(204\) 0 0
\(205\) −750.000 −0.255523
\(206\) 0 0
\(207\) −1224.00 −0.410985
\(208\) 0 0
\(209\) 896.000 0.296544
\(210\) 0 0
\(211\) −3484.00 −1.13672 −0.568361 0.822779i \(-0.692422\pi\)
−0.568361 + 0.822779i \(0.692422\pi\)
\(212\) 0 0
\(213\) 612.000 0.196871
\(214\) 0 0
\(215\) −100.000 −0.0317207
\(216\) 0 0
\(217\) −812.000 −0.254019
\(218\) 0 0
\(219\) −630.000 −0.194390
\(220\) 0 0
\(221\) 868.000 0.264199
\(222\) 0 0
\(223\) −1480.00 −0.444431 −0.222216 0.974998i \(-0.571329\pi\)
−0.222216 + 0.974998i \(0.571329\pi\)
\(224\) 0 0
\(225\) 225.000 0.0666667
\(226\) 0 0
\(227\) 2004.00 0.585948 0.292974 0.956120i \(-0.405355\pi\)
0.292974 + 0.956120i \(0.405355\pi\)
\(228\) 0 0
\(229\) 142.000 0.0409765 0.0204883 0.999790i \(-0.493478\pi\)
0.0204883 + 0.999790i \(0.493478\pi\)
\(230\) 0 0
\(231\) −336.000 −0.0957021
\(232\) 0 0
\(233\) 4590.00 1.29056 0.645281 0.763945i \(-0.276740\pi\)
0.645281 + 0.763945i \(0.276740\pi\)
\(234\) 0 0
\(235\) 760.000 0.210966
\(236\) 0 0
\(237\) −2952.00 −0.809084
\(238\) 0 0
\(239\) 4548.00 1.23090 0.615451 0.788175i \(-0.288974\pi\)
0.615451 + 0.788175i \(0.288974\pi\)
\(240\) 0 0
\(241\) −6118.00 −1.63525 −0.817625 0.575752i \(-0.804709\pi\)
−0.817625 + 0.575752i \(0.804709\pi\)
\(242\) 0 0
\(243\) 243.000 0.0641500
\(244\) 0 0
\(245\) 245.000 0.0638877
\(246\) 0 0
\(247\) 3472.00 0.894405
\(248\) 0 0
\(249\) 1884.00 0.479493
\(250\) 0 0
\(251\) 1740.00 0.437561 0.218781 0.975774i \(-0.429792\pi\)
0.218781 + 0.975774i \(0.429792\pi\)
\(252\) 0 0
\(253\) 2176.00 0.540727
\(254\) 0 0
\(255\) −210.000 −0.0515714
\(256\) 0 0
\(257\) 4554.00 1.10533 0.552667 0.833402i \(-0.313610\pi\)
0.552667 + 0.833402i \(0.313610\pi\)
\(258\) 0 0
\(259\) 42.0000 0.0100763
\(260\) 0 0
\(261\) −1386.00 −0.328702
\(262\) 0 0
\(263\) 2448.00 0.573955 0.286977 0.957937i \(-0.407350\pi\)
0.286977 + 0.957937i \(0.407350\pi\)
\(264\) 0 0
\(265\) −390.000 −0.0904057
\(266\) 0 0
\(267\) 414.000 0.0948928
\(268\) 0 0
\(269\) −1994.00 −0.451957 −0.225978 0.974132i \(-0.572558\pi\)
−0.225978 + 0.974132i \(0.572558\pi\)
\(270\) 0 0
\(271\) 3396.00 0.761226 0.380613 0.924734i \(-0.375713\pi\)
0.380613 + 0.924734i \(0.375713\pi\)
\(272\) 0 0
\(273\) −1302.00 −0.288647
\(274\) 0 0
\(275\) −400.000 −0.0877124
\(276\) 0 0
\(277\) −3754.00 −0.814282 −0.407141 0.913365i \(-0.633474\pi\)
−0.407141 + 0.913365i \(0.633474\pi\)
\(278\) 0 0
\(279\) −1044.00 −0.224024
\(280\) 0 0
\(281\) 1250.00 0.265369 0.132685 0.991158i \(-0.457640\pi\)
0.132685 + 0.991158i \(0.457640\pi\)
\(282\) 0 0
\(283\) 308.000 0.0646951 0.0323475 0.999477i \(-0.489702\pi\)
0.0323475 + 0.999477i \(0.489702\pi\)
\(284\) 0 0
\(285\) −840.000 −0.174587
\(286\) 0 0
\(287\) −1050.00 −0.215957
\(288\) 0 0
\(289\) −4717.00 −0.960106
\(290\) 0 0
\(291\) −3606.00 −0.726417
\(292\) 0 0
\(293\) 38.0000 0.00757674 0.00378837 0.999993i \(-0.498794\pi\)
0.00378837 + 0.999993i \(0.498794\pi\)
\(294\) 0 0
\(295\) 620.000 0.122365
\(296\) 0 0
\(297\) −432.000 −0.0844013
\(298\) 0 0
\(299\) 8432.00 1.63089
\(300\) 0 0
\(301\) −140.000 −0.0268089
\(302\) 0 0
\(303\) 810.000 0.153575
\(304\) 0 0
\(305\) 830.000 0.155822
\(306\) 0 0
\(307\) 5860.00 1.08941 0.544703 0.838629i \(-0.316642\pi\)
0.544703 + 0.838629i \(0.316642\pi\)
\(308\) 0 0
\(309\) −1464.00 −0.269528
\(310\) 0 0
\(311\) 3400.00 0.619924 0.309962 0.950749i \(-0.399684\pi\)
0.309962 + 0.950749i \(0.399684\pi\)
\(312\) 0 0
\(313\) 2054.00 0.370923 0.185462 0.982652i \(-0.440622\pi\)
0.185462 + 0.982652i \(0.440622\pi\)
\(314\) 0 0
\(315\) 315.000 0.0563436
\(316\) 0 0
\(317\) −1254.00 −0.222182 −0.111091 0.993810i \(-0.535434\pi\)
−0.111091 + 0.993810i \(0.535434\pi\)
\(318\) 0 0
\(319\) 2464.00 0.432469
\(320\) 0 0
\(321\) −3276.00 −0.569621
\(322\) 0 0
\(323\) 784.000 0.135056
\(324\) 0 0
\(325\) −1550.00 −0.264549
\(326\) 0 0
\(327\) 5730.00 0.969021
\(328\) 0 0
\(329\) 1064.00 0.178299
\(330\) 0 0
\(331\) −132.000 −0.0219196 −0.0109598 0.999940i \(-0.503489\pi\)
−0.0109598 + 0.999940i \(0.503489\pi\)
\(332\) 0 0
\(333\) 54.0000 0.00888643
\(334\) 0 0
\(335\) 700.000 0.114164
\(336\) 0 0
\(337\) −398.000 −0.0643337 −0.0321668 0.999483i \(-0.510241\pi\)
−0.0321668 + 0.999483i \(0.510241\pi\)
\(338\) 0 0
\(339\) −3006.00 −0.481603
\(340\) 0 0
\(341\) 1856.00 0.294745
\(342\) 0 0
\(343\) 343.000 0.0539949
\(344\) 0 0
\(345\) −2040.00 −0.318348
\(346\) 0 0
\(347\) 10084.0 1.56005 0.780025 0.625748i \(-0.215206\pi\)
0.780025 + 0.625748i \(0.215206\pi\)
\(348\) 0 0
\(349\) 822.000 0.126076 0.0630382 0.998011i \(-0.479921\pi\)
0.0630382 + 0.998011i \(0.479921\pi\)
\(350\) 0 0
\(351\) −1674.00 −0.254563
\(352\) 0 0
\(353\) 5698.00 0.859133 0.429566 0.903035i \(-0.358666\pi\)
0.429566 + 0.903035i \(0.358666\pi\)
\(354\) 0 0
\(355\) 1020.00 0.152496
\(356\) 0 0
\(357\) −294.000 −0.0435858
\(358\) 0 0
\(359\) −2364.00 −0.347541 −0.173770 0.984786i \(-0.555595\pi\)
−0.173770 + 0.984786i \(0.555595\pi\)
\(360\) 0 0
\(361\) −3723.00 −0.542790
\(362\) 0 0
\(363\) −3225.00 −0.466305
\(364\) 0 0
\(365\) −1050.00 −0.150574
\(366\) 0 0
\(367\) 776.000 0.110373 0.0551865 0.998476i \(-0.482425\pi\)
0.0551865 + 0.998476i \(0.482425\pi\)
\(368\) 0 0
\(369\) −1350.00 −0.190456
\(370\) 0 0
\(371\) −546.000 −0.0764068
\(372\) 0 0
\(373\) −8930.00 −1.23962 −0.619809 0.784752i \(-0.712790\pi\)
−0.619809 + 0.784752i \(0.712790\pi\)
\(374\) 0 0
\(375\) 375.000 0.0516398
\(376\) 0 0
\(377\) 9548.00 1.30437
\(378\) 0 0
\(379\) 6868.00 0.930832 0.465416 0.885092i \(-0.345905\pi\)
0.465416 + 0.885092i \(0.345905\pi\)
\(380\) 0 0
\(381\) 2952.00 0.396944
\(382\) 0 0
\(383\) 10848.0 1.44728 0.723638 0.690179i \(-0.242468\pi\)
0.723638 + 0.690179i \(0.242468\pi\)
\(384\) 0 0
\(385\) −560.000 −0.0741305
\(386\) 0 0
\(387\) −180.000 −0.0236432
\(388\) 0 0
\(389\) 5046.00 0.657692 0.328846 0.944383i \(-0.393340\pi\)
0.328846 + 0.944383i \(0.393340\pi\)
\(390\) 0 0
\(391\) 1904.00 0.246264
\(392\) 0 0
\(393\) −252.000 −0.0323453
\(394\) 0 0
\(395\) −4920.00 −0.626714
\(396\) 0 0
\(397\) 7090.00 0.896315 0.448157 0.893955i \(-0.352080\pi\)
0.448157 + 0.893955i \(0.352080\pi\)
\(398\) 0 0
\(399\) −1176.00 −0.147553
\(400\) 0 0
\(401\) −2382.00 −0.296637 −0.148318 0.988940i \(-0.547386\pi\)
−0.148318 + 0.988940i \(0.547386\pi\)
\(402\) 0 0
\(403\) 7192.00 0.888980
\(404\) 0 0
\(405\) 405.000 0.0496904
\(406\) 0 0
\(407\) −96.0000 −0.0116918
\(408\) 0 0
\(409\) 1498.00 0.181104 0.0905518 0.995892i \(-0.471137\pi\)
0.0905518 + 0.995892i \(0.471137\pi\)
\(410\) 0 0
\(411\) 1698.00 0.203786
\(412\) 0 0
\(413\) 868.000 0.103418
\(414\) 0 0
\(415\) 3140.00 0.371413
\(416\) 0 0
\(417\) 2592.00 0.304390
\(418\) 0 0
\(419\) 8940.00 1.04236 0.521178 0.853448i \(-0.325493\pi\)
0.521178 + 0.853448i \(0.325493\pi\)
\(420\) 0 0
\(421\) 3966.00 0.459124 0.229562 0.973294i \(-0.426271\pi\)
0.229562 + 0.973294i \(0.426271\pi\)
\(422\) 0 0
\(423\) 1368.00 0.157245
\(424\) 0 0
\(425\) −350.000 −0.0399470
\(426\) 0 0
\(427\) 1162.00 0.131693
\(428\) 0 0
\(429\) 2976.00 0.334925
\(430\) 0 0
\(431\) −8924.00 −0.997341 −0.498670 0.866792i \(-0.666178\pi\)
−0.498670 + 0.866792i \(0.666178\pi\)
\(432\) 0 0
\(433\) 5342.00 0.592887 0.296444 0.955050i \(-0.404199\pi\)
0.296444 + 0.955050i \(0.404199\pi\)
\(434\) 0 0
\(435\) −2310.00 −0.254612
\(436\) 0 0
\(437\) 7616.00 0.833690
\(438\) 0 0
\(439\) −4460.00 −0.484884 −0.242442 0.970166i \(-0.577948\pi\)
−0.242442 + 0.970166i \(0.577948\pi\)
\(440\) 0 0
\(441\) 441.000 0.0476190
\(442\) 0 0
\(443\) 14340.0 1.53795 0.768977 0.639276i \(-0.220766\pi\)
0.768977 + 0.639276i \(0.220766\pi\)
\(444\) 0 0
\(445\) 690.000 0.0735037
\(446\) 0 0
\(447\) −3822.00 −0.404417
\(448\) 0 0
\(449\) 18018.0 1.89381 0.946906 0.321509i \(-0.104190\pi\)
0.946906 + 0.321509i \(0.104190\pi\)
\(450\) 0 0
\(451\) 2400.00 0.250580
\(452\) 0 0
\(453\) −2856.00 −0.296218
\(454\) 0 0
\(455\) −2170.00 −0.223585
\(456\) 0 0
\(457\) 34.0000 0.00348020 0.00174010 0.999998i \(-0.499446\pi\)
0.00174010 + 0.999998i \(0.499446\pi\)
\(458\) 0 0
\(459\) −378.000 −0.0384391
\(460\) 0 0
\(461\) −9498.00 −0.959579 −0.479790 0.877384i \(-0.659287\pi\)
−0.479790 + 0.877384i \(0.659287\pi\)
\(462\) 0 0
\(463\) −3432.00 −0.344489 −0.172245 0.985054i \(-0.555102\pi\)
−0.172245 + 0.985054i \(0.555102\pi\)
\(464\) 0 0
\(465\) −1740.00 −0.173528
\(466\) 0 0
\(467\) 13396.0 1.32739 0.663697 0.748002i \(-0.268986\pi\)
0.663697 + 0.748002i \(0.268986\pi\)
\(468\) 0 0
\(469\) 980.000 0.0964866
\(470\) 0 0
\(471\) −7026.00 −0.687348
\(472\) 0 0
\(473\) 320.000 0.0311070
\(474\) 0 0
\(475\) −1400.00 −0.135235
\(476\) 0 0
\(477\) −702.000 −0.0673844
\(478\) 0 0
\(479\) −14752.0 −1.40717 −0.703587 0.710609i \(-0.748419\pi\)
−0.703587 + 0.710609i \(0.748419\pi\)
\(480\) 0 0
\(481\) −372.000 −0.0352635
\(482\) 0 0
\(483\) −2856.00 −0.269053
\(484\) 0 0
\(485\) −6010.00 −0.562680
\(486\) 0 0
\(487\) −6224.00 −0.579130 −0.289565 0.957158i \(-0.593511\pi\)
−0.289565 + 0.957158i \(0.593511\pi\)
\(488\) 0 0
\(489\) 10380.0 0.959918
\(490\) 0 0
\(491\) −8400.00 −0.772071 −0.386035 0.922484i \(-0.626156\pi\)
−0.386035 + 0.922484i \(0.626156\pi\)
\(492\) 0 0
\(493\) 2156.00 0.196960
\(494\) 0 0
\(495\) −720.000 −0.0653770
\(496\) 0 0
\(497\) 1428.00 0.128882
\(498\) 0 0
\(499\) −5188.00 −0.465424 −0.232712 0.972546i \(-0.574760\pi\)
−0.232712 + 0.972546i \(0.574760\pi\)
\(500\) 0 0
\(501\) 1800.00 0.160515
\(502\) 0 0
\(503\) −18648.0 −1.65303 −0.826514 0.562916i \(-0.809679\pi\)
−0.826514 + 0.562916i \(0.809679\pi\)
\(504\) 0 0
\(505\) 1350.00 0.118959
\(506\) 0 0
\(507\) 4941.00 0.432816
\(508\) 0 0
\(509\) 18950.0 1.65018 0.825092 0.564998i \(-0.191123\pi\)
0.825092 + 0.564998i \(0.191123\pi\)
\(510\) 0 0
\(511\) −1470.00 −0.127258
\(512\) 0 0
\(513\) −1512.00 −0.130129
\(514\) 0 0
\(515\) −2440.00 −0.208775
\(516\) 0 0
\(517\) −2432.00 −0.206884
\(518\) 0 0
\(519\) −5910.00 −0.499846
\(520\) 0 0
\(521\) −5158.00 −0.433735 −0.216868 0.976201i \(-0.569584\pi\)
−0.216868 + 0.976201i \(0.569584\pi\)
\(522\) 0 0
\(523\) 15004.0 1.25445 0.627227 0.778837i \(-0.284190\pi\)
0.627227 + 0.778837i \(0.284190\pi\)
\(524\) 0 0
\(525\) 525.000 0.0436436
\(526\) 0 0
\(527\) 1624.00 0.134236
\(528\) 0 0
\(529\) 6329.00 0.520178
\(530\) 0 0
\(531\) 1116.00 0.0912058
\(532\) 0 0
\(533\) 9300.00 0.755774
\(534\) 0 0
\(535\) −5460.00 −0.441227
\(536\) 0 0
\(537\) 4440.00 0.356797
\(538\) 0 0
\(539\) −784.000 −0.0626517
\(540\) 0 0
\(541\) −20906.0 −1.66140 −0.830702 0.556718i \(-0.812060\pi\)
−0.830702 + 0.556718i \(0.812060\pi\)
\(542\) 0 0
\(543\) −13566.0 −1.07214
\(544\) 0 0
\(545\) 9550.00 0.750600
\(546\) 0 0
\(547\) 8732.00 0.682547 0.341274 0.939964i \(-0.389142\pi\)
0.341274 + 0.939964i \(0.389142\pi\)
\(548\) 0 0
\(549\) 1494.00 0.116143
\(550\) 0 0
\(551\) 8624.00 0.666778
\(552\) 0 0
\(553\) −6888.00 −0.529670
\(554\) 0 0
\(555\) 90.0000 0.00688340
\(556\) 0 0
\(557\) 8602.00 0.654360 0.327180 0.944962i \(-0.393902\pi\)
0.327180 + 0.944962i \(0.393902\pi\)
\(558\) 0 0
\(559\) 1240.00 0.0938218
\(560\) 0 0
\(561\) 672.000 0.0505737
\(562\) 0 0
\(563\) −12052.0 −0.902187 −0.451093 0.892477i \(-0.648966\pi\)
−0.451093 + 0.892477i \(0.648966\pi\)
\(564\) 0 0
\(565\) −5010.00 −0.373048
\(566\) 0 0
\(567\) 567.000 0.0419961
\(568\) 0 0
\(569\) 14746.0 1.08644 0.543220 0.839590i \(-0.317205\pi\)
0.543220 + 0.839590i \(0.317205\pi\)
\(570\) 0 0
\(571\) −524.000 −0.0384041 −0.0192020 0.999816i \(-0.506113\pi\)
−0.0192020 + 0.999816i \(0.506113\pi\)
\(572\) 0 0
\(573\) 4404.00 0.321082
\(574\) 0 0
\(575\) −3400.00 −0.246591
\(576\) 0 0
\(577\) −16162.0 −1.16609 −0.583044 0.812441i \(-0.698139\pi\)
−0.583044 + 0.812441i \(0.698139\pi\)
\(578\) 0 0
\(579\) −10986.0 −0.788536
\(580\) 0 0
\(581\) 4396.00 0.313902
\(582\) 0 0
\(583\) 1248.00 0.0886567
\(584\) 0 0
\(585\) −2790.00 −0.197183
\(586\) 0 0
\(587\) 23460.0 1.64957 0.824785 0.565446i \(-0.191296\pi\)
0.824785 + 0.565446i \(0.191296\pi\)
\(588\) 0 0
\(589\) 6496.00 0.454436
\(590\) 0 0
\(591\) −5394.00 −0.375431
\(592\) 0 0
\(593\) 4818.00 0.333645 0.166823 0.985987i \(-0.446649\pi\)
0.166823 + 0.985987i \(0.446649\pi\)
\(594\) 0 0
\(595\) −490.000 −0.0337614
\(596\) 0 0
\(597\) −1380.00 −0.0946058
\(598\) 0 0
\(599\) −27612.0 −1.88347 −0.941733 0.336362i \(-0.890803\pi\)
−0.941733 + 0.336362i \(0.890803\pi\)
\(600\) 0 0
\(601\) −7550.00 −0.512431 −0.256215 0.966620i \(-0.582476\pi\)
−0.256215 + 0.966620i \(0.582476\pi\)
\(602\) 0 0
\(603\) 1260.00 0.0850931
\(604\) 0 0
\(605\) −5375.00 −0.361198
\(606\) 0 0
\(607\) 3192.00 0.213442 0.106721 0.994289i \(-0.465965\pi\)
0.106721 + 0.994289i \(0.465965\pi\)
\(608\) 0 0
\(609\) −3234.00 −0.215186
\(610\) 0 0
\(611\) −9424.00 −0.623984
\(612\) 0 0
\(613\) −9738.00 −0.641622 −0.320811 0.947143i \(-0.603955\pi\)
−0.320811 + 0.947143i \(0.603955\pi\)
\(614\) 0 0
\(615\) −2250.00 −0.147526
\(616\) 0 0
\(617\) 7326.00 0.478012 0.239006 0.971018i \(-0.423178\pi\)
0.239006 + 0.971018i \(0.423178\pi\)
\(618\) 0 0
\(619\) −3232.00 −0.209863 −0.104931 0.994479i \(-0.533462\pi\)
−0.104931 + 0.994479i \(0.533462\pi\)
\(620\) 0 0
\(621\) −3672.00 −0.237282
\(622\) 0 0
\(623\) 966.000 0.0621219
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 0 0
\(627\) 2688.00 0.171210
\(628\) 0 0
\(629\) −84.0000 −0.00532480
\(630\) 0 0
\(631\) −20048.0 −1.26482 −0.632408 0.774636i \(-0.717933\pi\)
−0.632408 + 0.774636i \(0.717933\pi\)
\(632\) 0 0
\(633\) −10452.0 −0.656287
\(634\) 0 0
\(635\) 4920.00 0.307471
\(636\) 0 0
\(637\) −3038.00 −0.188964
\(638\) 0 0
\(639\) 1836.00 0.113664
\(640\) 0 0
\(641\) −28518.0 −1.75724 −0.878622 0.477518i \(-0.841536\pi\)
−0.878622 + 0.477518i \(0.841536\pi\)
\(642\) 0 0
\(643\) −300.000 −0.0183994 −0.00919972 0.999958i \(-0.502928\pi\)
−0.00919972 + 0.999958i \(0.502928\pi\)
\(644\) 0 0
\(645\) −300.000 −0.0183139
\(646\) 0 0
\(647\) 6024.00 0.366040 0.183020 0.983109i \(-0.441413\pi\)
0.183020 + 0.983109i \(0.441413\pi\)
\(648\) 0 0
\(649\) −1984.00 −0.119998
\(650\) 0 0
\(651\) −2436.00 −0.146658
\(652\) 0 0
\(653\) −13598.0 −0.814902 −0.407451 0.913227i \(-0.633582\pi\)
−0.407451 + 0.913227i \(0.633582\pi\)
\(654\) 0 0
\(655\) −420.000 −0.0250546
\(656\) 0 0
\(657\) −1890.00 −0.112231
\(658\) 0 0
\(659\) −22224.0 −1.31369 −0.656847 0.754024i \(-0.728110\pi\)
−0.656847 + 0.754024i \(0.728110\pi\)
\(660\) 0 0
\(661\) −29058.0 −1.70987 −0.854936 0.518734i \(-0.826404\pi\)
−0.854936 + 0.518734i \(0.826404\pi\)
\(662\) 0 0
\(663\) 2604.00 0.152535
\(664\) 0 0
\(665\) −1960.00 −0.114294
\(666\) 0 0
\(667\) 20944.0 1.21582
\(668\) 0 0
\(669\) −4440.00 −0.256592
\(670\) 0 0
\(671\) −2656.00 −0.152807
\(672\) 0 0
\(673\) −4230.00 −0.242280 −0.121140 0.992635i \(-0.538655\pi\)
−0.121140 + 0.992635i \(0.538655\pi\)
\(674\) 0 0
\(675\) 675.000 0.0384900
\(676\) 0 0
\(677\) 15974.0 0.906840 0.453420 0.891297i \(-0.350204\pi\)
0.453420 + 0.891297i \(0.350204\pi\)
\(678\) 0 0
\(679\) −8414.00 −0.475552
\(680\) 0 0
\(681\) 6012.00 0.338297
\(682\) 0 0
\(683\) −31068.0 −1.74053 −0.870266 0.492581i \(-0.836053\pi\)
−0.870266 + 0.492581i \(0.836053\pi\)
\(684\) 0 0
\(685\) 2830.00 0.157852
\(686\) 0 0
\(687\) 426.000 0.0236578
\(688\) 0 0
\(689\) 4836.00 0.267398
\(690\) 0 0
\(691\) −7648.00 −0.421047 −0.210524 0.977589i \(-0.567517\pi\)
−0.210524 + 0.977589i \(0.567517\pi\)
\(692\) 0 0
\(693\) −1008.00 −0.0552536
\(694\) 0 0
\(695\) 4320.00 0.235780
\(696\) 0 0
\(697\) 2100.00 0.114122
\(698\) 0 0
\(699\) 13770.0 0.745106
\(700\) 0 0
\(701\) 12454.0 0.671014 0.335507 0.942038i \(-0.391092\pi\)
0.335507 + 0.942038i \(0.391092\pi\)
\(702\) 0 0
\(703\) −336.000 −0.0180263
\(704\) 0 0
\(705\) 2280.00 0.121801
\(706\) 0 0
\(707\) 1890.00 0.100539
\(708\) 0 0
\(709\) −31618.0 −1.67481 −0.837404 0.546584i \(-0.815928\pi\)
−0.837404 + 0.546584i \(0.815928\pi\)
\(710\) 0 0
\(711\) −8856.00 −0.467125
\(712\) 0 0
\(713\) 15776.0 0.828634
\(714\) 0 0
\(715\) 4960.00 0.259431
\(716\) 0 0
\(717\) 13644.0 0.710662
\(718\) 0 0
\(719\) −18280.0 −0.948163 −0.474081 0.880481i \(-0.657220\pi\)
−0.474081 + 0.880481i \(0.657220\pi\)
\(720\) 0 0
\(721\) −3416.00 −0.176447
\(722\) 0 0
\(723\) −18354.0 −0.944111
\(724\) 0 0
\(725\) −3850.00 −0.197221
\(726\) 0 0
\(727\) 23312.0 1.18926 0.594632 0.803998i \(-0.297298\pi\)
0.594632 + 0.803998i \(0.297298\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) 280.000 0.0141671
\(732\) 0 0
\(733\) 28962.0 1.45939 0.729697 0.683771i \(-0.239661\pi\)
0.729697 + 0.683771i \(0.239661\pi\)
\(734\) 0 0
\(735\) 735.000 0.0368856
\(736\) 0 0
\(737\) −2240.00 −0.111956
\(738\) 0 0
\(739\) −14340.0 −0.713810 −0.356905 0.934141i \(-0.616168\pi\)
−0.356905 + 0.934141i \(0.616168\pi\)
\(740\) 0 0
\(741\) 10416.0 0.516385
\(742\) 0 0
\(743\) −8976.00 −0.443200 −0.221600 0.975138i \(-0.571128\pi\)
−0.221600 + 0.975138i \(0.571128\pi\)
\(744\) 0 0
\(745\) −6370.00 −0.313260
\(746\) 0 0
\(747\) 5652.00 0.276835
\(748\) 0 0
\(749\) −7644.00 −0.372905
\(750\) 0 0
\(751\) −34008.0 −1.65242 −0.826211 0.563360i \(-0.809508\pi\)
−0.826211 + 0.563360i \(0.809508\pi\)
\(752\) 0 0
\(753\) 5220.00 0.252626
\(754\) 0 0
\(755\) −4760.00 −0.229449
\(756\) 0 0
\(757\) 21854.0 1.04927 0.524635 0.851327i \(-0.324202\pi\)
0.524635 + 0.851327i \(0.324202\pi\)
\(758\) 0 0
\(759\) 6528.00 0.312189
\(760\) 0 0
\(761\) −9798.00 −0.466724 −0.233362 0.972390i \(-0.574973\pi\)
−0.233362 + 0.972390i \(0.574973\pi\)
\(762\) 0 0
\(763\) 13370.0 0.634373
\(764\) 0 0
\(765\) −630.000 −0.0297748
\(766\) 0 0
\(767\) −7688.00 −0.361926
\(768\) 0 0
\(769\) 14938.0 0.700492 0.350246 0.936658i \(-0.386098\pi\)
0.350246 + 0.936658i \(0.386098\pi\)
\(770\) 0 0
\(771\) 13662.0 0.638165
\(772\) 0 0
\(773\) −9546.00 −0.444173 −0.222087 0.975027i \(-0.571287\pi\)
−0.222087 + 0.975027i \(0.571287\pi\)
\(774\) 0 0
\(775\) −2900.00 −0.134414
\(776\) 0 0
\(777\) 126.000 0.00581754
\(778\) 0 0
\(779\) 8400.00 0.386343
\(780\) 0 0
\(781\) −3264.00 −0.149546
\(782\) 0 0
\(783\) −4158.00 −0.189776
\(784\) 0 0
\(785\) −11710.0 −0.532418
\(786\) 0 0
\(787\) 9812.00 0.444422 0.222211 0.974999i \(-0.428673\pi\)
0.222211 + 0.974999i \(0.428673\pi\)
\(788\) 0 0
\(789\) 7344.00 0.331373
\(790\) 0 0
\(791\) −7014.00 −0.315283
\(792\) 0 0
\(793\) −10292.0 −0.460882
\(794\) 0 0
\(795\) −1170.00 −0.0521958
\(796\) 0 0
\(797\) −24546.0 −1.09092 −0.545460 0.838137i \(-0.683645\pi\)
−0.545460 + 0.838137i \(0.683645\pi\)
\(798\) 0 0
\(799\) −2128.00 −0.0942218
\(800\) 0 0
\(801\) 1242.00 0.0547864
\(802\) 0 0
\(803\) 3360.00 0.147661
\(804\) 0 0
\(805\) −4760.00 −0.208407
\(806\) 0 0
\(807\) −5982.00 −0.260937
\(808\) 0 0
\(809\) −12414.0 −0.539497 −0.269748 0.962931i \(-0.586941\pi\)
−0.269748 + 0.962931i \(0.586941\pi\)
\(810\) 0 0
\(811\) −30592.0 −1.32458 −0.662288 0.749250i \(-0.730414\pi\)
−0.662288 + 0.749250i \(0.730414\pi\)
\(812\) 0 0
\(813\) 10188.0 0.439494
\(814\) 0 0
\(815\) 17300.0 0.743549
\(816\) 0 0
\(817\) 1120.00 0.0479606
\(818\) 0 0
\(819\) −3906.00 −0.166650
\(820\) 0 0
\(821\) 22190.0 0.943284 0.471642 0.881790i \(-0.343661\pi\)
0.471642 + 0.881790i \(0.343661\pi\)
\(822\) 0 0
\(823\) −26960.0 −1.14188 −0.570940 0.820992i \(-0.693421\pi\)
−0.570940 + 0.820992i \(0.693421\pi\)
\(824\) 0 0
\(825\) −1200.00 −0.0506408
\(826\) 0 0
\(827\) −3876.00 −0.162977 −0.0814883 0.996674i \(-0.525967\pi\)
−0.0814883 + 0.996674i \(0.525967\pi\)
\(828\) 0 0
\(829\) 24190.0 1.01345 0.506727 0.862107i \(-0.330855\pi\)
0.506727 + 0.862107i \(0.330855\pi\)
\(830\) 0 0
\(831\) −11262.0 −0.470126
\(832\) 0 0
\(833\) −686.000 −0.0285336
\(834\) 0 0
\(835\) 3000.00 0.124334
\(836\) 0 0
\(837\) −3132.00 −0.129340
\(838\) 0 0
\(839\) 6496.00 0.267303 0.133651 0.991028i \(-0.457330\pi\)
0.133651 + 0.991028i \(0.457330\pi\)
\(840\) 0 0
\(841\) −673.000 −0.0275944
\(842\) 0 0
\(843\) 3750.00 0.153211
\(844\) 0 0
\(845\) 8235.00 0.335258
\(846\) 0 0
\(847\) −7525.00 −0.305268
\(848\) 0 0
\(849\) 924.000 0.0373517
\(850\) 0 0
\(851\) −816.000 −0.0328697
\(852\) 0 0
\(853\) 28058.0 1.12625 0.563123 0.826373i \(-0.309600\pi\)
0.563123 + 0.826373i \(0.309600\pi\)
\(854\) 0 0
\(855\) −2520.00 −0.100798
\(856\) 0 0
\(857\) −33390.0 −1.33090 −0.665450 0.746443i \(-0.731760\pi\)
−0.665450 + 0.746443i \(0.731760\pi\)
\(858\) 0 0
\(859\) 33608.0 1.33491 0.667456 0.744649i \(-0.267383\pi\)
0.667456 + 0.744649i \(0.267383\pi\)
\(860\) 0 0
\(861\) −3150.00 −0.124683
\(862\) 0 0
\(863\) −16608.0 −0.655090 −0.327545 0.944836i \(-0.606221\pi\)
−0.327545 + 0.944836i \(0.606221\pi\)
\(864\) 0 0
\(865\) −9850.00 −0.387179
\(866\) 0 0
\(867\) −14151.0 −0.554317
\(868\) 0 0
\(869\) 15744.0 0.614590
\(870\) 0 0
\(871\) −8680.00 −0.337670
\(872\) 0 0
\(873\) −10818.0 −0.419397
\(874\) 0 0
\(875\) 875.000 0.0338062
\(876\) 0 0
\(877\) −194.000 −0.00746969 −0.00373484 0.999993i \(-0.501189\pi\)
−0.00373484 + 0.999993i \(0.501189\pi\)
\(878\) 0 0
\(879\) 114.000 0.00437443
\(880\) 0 0
\(881\) −3294.00 −0.125968 −0.0629839 0.998015i \(-0.520062\pi\)
−0.0629839 + 0.998015i \(0.520062\pi\)
\(882\) 0 0
\(883\) 49772.0 1.89690 0.948449 0.316929i \(-0.102652\pi\)
0.948449 + 0.316929i \(0.102652\pi\)
\(884\) 0 0
\(885\) 1860.00 0.0706477
\(886\) 0 0
\(887\) 19856.0 0.751634 0.375817 0.926694i \(-0.377362\pi\)
0.375817 + 0.926694i \(0.377362\pi\)
\(888\) 0 0
\(889\) 6888.00 0.259861
\(890\) 0 0
\(891\) −1296.00 −0.0487291
\(892\) 0 0
\(893\) −8512.00 −0.318973
\(894\) 0 0
\(895\) 7400.00 0.276374
\(896\) 0 0
\(897\) 25296.0 0.941593
\(898\) 0 0
\(899\) 17864.0 0.662734
\(900\) 0 0
\(901\) 1092.00 0.0403771
\(902\) 0 0
\(903\) −420.000 −0.0154781
\(904\) 0 0
\(905\) −22610.0 −0.830477
\(906\) 0 0
\(907\) −3468.00 −0.126960 −0.0634802 0.997983i \(-0.520220\pi\)
−0.0634802 + 0.997983i \(0.520220\pi\)
\(908\) 0 0
\(909\) 2430.00 0.0886667
\(910\) 0 0
\(911\) −32452.0 −1.18022 −0.590111 0.807322i \(-0.700916\pi\)
−0.590111 + 0.807322i \(0.700916\pi\)
\(912\) 0 0
\(913\) −10048.0 −0.364228
\(914\) 0 0
\(915\) 2490.00 0.0899638
\(916\) 0 0
\(917\) −588.000 −0.0211750
\(918\) 0 0
\(919\) −44368.0 −1.59256 −0.796281 0.604926i \(-0.793203\pi\)
−0.796281 + 0.604926i \(0.793203\pi\)
\(920\) 0 0
\(921\) 17580.0 0.628969
\(922\) 0 0
\(923\) −12648.0 −0.451044
\(924\) 0 0
\(925\) 150.000 0.00533186
\(926\) 0 0
\(927\) −4392.00 −0.155612
\(928\) 0 0
\(929\) 36146.0 1.27655 0.638273 0.769810i \(-0.279649\pi\)
0.638273 + 0.769810i \(0.279649\pi\)
\(930\) 0 0
\(931\) −2744.00 −0.0965961
\(932\) 0 0
\(933\) 10200.0 0.357913
\(934\) 0 0
\(935\) 1120.00 0.0391742
\(936\) 0 0
\(937\) −29042.0 −1.01255 −0.506276 0.862372i \(-0.668978\pi\)
−0.506276 + 0.862372i \(0.668978\pi\)
\(938\) 0 0
\(939\) 6162.00 0.214153
\(940\) 0 0
\(941\) 1622.00 0.0561910 0.0280955 0.999605i \(-0.491056\pi\)
0.0280955 + 0.999605i \(0.491056\pi\)
\(942\) 0 0
\(943\) 20400.0 0.704470
\(944\) 0 0
\(945\) 945.000 0.0325300
\(946\) 0 0
\(947\) −39460.0 −1.35404 −0.677021 0.735964i \(-0.736729\pi\)
−0.677021 + 0.735964i \(0.736729\pi\)
\(948\) 0 0
\(949\) 13020.0 0.445360
\(950\) 0 0
\(951\) −3762.00 −0.128277
\(952\) 0 0
\(953\) 48990.0 1.66521 0.832603 0.553870i \(-0.186850\pi\)
0.832603 + 0.553870i \(0.186850\pi\)
\(954\) 0 0
\(955\) 7340.00 0.248709
\(956\) 0 0
\(957\) 7392.00 0.249686
\(958\) 0 0
\(959\) 3962.00 0.133409
\(960\) 0 0
\(961\) −16335.0 −0.548320
\(962\) 0 0
\(963\) −9828.00 −0.328871
\(964\) 0 0
\(965\) −18310.0 −0.610798
\(966\) 0 0
\(967\) 16104.0 0.535543 0.267771 0.963482i \(-0.413713\pi\)
0.267771 + 0.963482i \(0.413713\pi\)
\(968\) 0 0
\(969\) 2352.00 0.0779743
\(970\) 0 0
\(971\) 39532.0 1.30653 0.653266 0.757129i \(-0.273398\pi\)
0.653266 + 0.757129i \(0.273398\pi\)
\(972\) 0 0
\(973\) 6048.00 0.199270
\(974\) 0 0
\(975\) −4650.00 −0.152738
\(976\) 0 0
\(977\) −7610.00 −0.249197 −0.124599 0.992207i \(-0.539764\pi\)
−0.124599 + 0.992207i \(0.539764\pi\)
\(978\) 0 0
\(979\) −2208.00 −0.0720817
\(980\) 0 0
\(981\) 17190.0 0.559464
\(982\) 0 0
\(983\) −22512.0 −0.730439 −0.365219 0.930921i \(-0.619006\pi\)
−0.365219 + 0.930921i \(0.619006\pi\)
\(984\) 0 0
\(985\) −8990.00 −0.290807
\(986\) 0 0
\(987\) 3192.00 0.102941
\(988\) 0 0
\(989\) 2720.00 0.0874530
\(990\) 0 0
\(991\) −48280.0 −1.54759 −0.773797 0.633434i \(-0.781645\pi\)
−0.773797 + 0.633434i \(0.781645\pi\)
\(992\) 0 0
\(993\) −396.000 −0.0126553
\(994\) 0 0
\(995\) −2300.00 −0.0732813
\(996\) 0 0
\(997\) −25926.0 −0.823555 −0.411778 0.911284i \(-0.635092\pi\)
−0.411778 + 0.911284i \(0.635092\pi\)
\(998\) 0 0
\(999\) 162.000 0.00513058
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 840.4.a.f.1.1 1
4.3 odd 2 1680.4.a.f.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
840.4.a.f.1.1 1 1.1 even 1 trivial
1680.4.a.f.1.1 1 4.3 odd 2