Properties

Label 840.2.db
Level $840$
Weight $2$
Character orbit 840.db
Rep. character $\chi_{840}(109,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $192$
Newform subspaces $6$
Sturm bound $384$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 840.db (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 280 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 6 \)
Sturm bound: \(384\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(11\), \(13\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(840, [\chi])\).

Total New Old
Modular forms 400 192 208
Cusp forms 368 192 176
Eisenstein series 32 0 32

Trace form

\( 192 q - 96 q^{9} - 6 q^{10} - 4 q^{14} - 8 q^{16} + 24 q^{20} + 16 q^{26} + 8 q^{30} + 48 q^{31} - 48 q^{34} + 26 q^{40} - 32 q^{44} + 44 q^{46} + 48 q^{50} - 52 q^{56} + 2 q^{60} - 96 q^{64} + 12 q^{66}+ \cdots - 20 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(840, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
840.2.db.a 840.db 280.af $4$ $6.707$ \(\Q(\zeta_{12})\) None 840.2.db.a \(-2\) \(-2\) \(2\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+(-\zeta_{12}-\zeta_{12}^{2}+\zeta_{12}^{3})q^{2}+(-1+\cdots)q^{3}+\cdots\)
840.2.db.b 840.db 280.af $4$ $6.707$ \(\Q(\zeta_{12})\) None 840.2.db.b \(-2\) \(2\) \(2\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+(\zeta_{12}-\zeta_{12}^{2}-\zeta_{12}^{3})q^{2}+(1-\zeta_{12}^{2}+\cdots)q^{3}+\cdots\)
840.2.db.c 840.db 280.af $4$ $6.707$ \(\Q(\zeta_{12})\) None 840.2.db.b \(2\) \(-2\) \(-2\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+(-\zeta_{12}+\zeta_{12}^{2}+\zeta_{12}^{3})q^{2}+(-1+\cdots)q^{3}+\cdots\)
840.2.db.d 840.db 280.af $4$ $6.707$ \(\Q(\zeta_{12})\) None 840.2.db.a \(2\) \(2\) \(-2\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+(\zeta_{12}+\zeta_{12}^{2}-\zeta_{12}^{3})q^{2}+(1-\zeta_{12}^{2}+\cdots)q^{3}+\cdots\)
840.2.db.e 840.db 280.af $88$ $6.707$ None 840.2.db.e \(0\) \(-44\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$
840.2.db.f 840.db 280.af $88$ $6.707$ None 840.2.db.e \(0\) \(44\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$

Decomposition of \(S_{2}^{\mathrm{old}}(840, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(840, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(280, [\chi])\)\(^{\oplus 2}\)