Defining parameters
Level: | \( N \) | \(=\) | \( 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 840.db (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 280 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 6 \) | ||
Sturm bound: | \(384\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(11\), \(13\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(840, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 400 | 192 | 208 |
Cusp forms | 368 | 192 | 176 |
Eisenstein series | 32 | 0 | 32 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(840, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
840.2.db.a | $4$ | $6.707$ | \(\Q(\zeta_{12})\) | None | \(-2\) | \(-2\) | \(2\) | \(0\) | \(q+(-\zeta_{12}-\zeta_{12}^{2}+\zeta_{12}^{3})q^{2}+(-1+\cdots)q^{3}+\cdots\) |
840.2.db.b | $4$ | $6.707$ | \(\Q(\zeta_{12})\) | None | \(-2\) | \(2\) | \(2\) | \(0\) | \(q+(\zeta_{12}-\zeta_{12}^{2}-\zeta_{12}^{3})q^{2}+(1-\zeta_{12}^{2}+\cdots)q^{3}+\cdots\) |
840.2.db.c | $4$ | $6.707$ | \(\Q(\zeta_{12})\) | None | \(2\) | \(-2\) | \(-2\) | \(0\) | \(q+(-\zeta_{12}+\zeta_{12}^{2}+\zeta_{12}^{3})q^{2}+(-1+\cdots)q^{3}+\cdots\) |
840.2.db.d | $4$ | $6.707$ | \(\Q(\zeta_{12})\) | None | \(2\) | \(2\) | \(-2\) | \(0\) | \(q+(\zeta_{12}+\zeta_{12}^{2}-\zeta_{12}^{3})q^{2}+(1-\zeta_{12}^{2}+\cdots)q^{3}+\cdots\) |
840.2.db.e | $88$ | $6.707$ | None | \(0\) | \(-44\) | \(0\) | \(0\) | ||
840.2.db.f | $88$ | $6.707$ | None | \(0\) | \(44\) | \(0\) | \(0\) |
Decomposition of \(S_{2}^{\mathrm{old}}(840, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(840, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(280, [\chi])\)\(^{\oplus 2}\)