Properties

Label 840.2.cp.b.521.14
Level $840$
Weight $2$
Character 840.521
Analytic conductor $6.707$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [840,2,Mod(521,840)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(840, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 3, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("840.521"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 840.cp (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0,0,16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.70743376979\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 521.14
Character \(\chi\) \(=\) 840.521
Dual form 840.2.cp.b.761.14

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.56554 + 0.741007i) q^{3} +(0.500000 + 0.866025i) q^{5} +(2.50460 + 0.852628i) q^{7} +(1.90182 + 2.32015i) q^{9} +(-0.731508 - 0.422337i) q^{11} +0.804561i q^{13} +(0.141038 + 1.72630i) q^{15} +(0.395740 - 0.685442i) q^{17} +(1.25255 - 0.723159i) q^{19} +(3.28925 + 3.19075i) q^{21} +(-2.47256 + 1.42754i) q^{23} +(-0.500000 + 0.866025i) q^{25} +(1.25812 + 5.04154i) q^{27} -3.55504i q^{29} +(-1.45279 - 0.838768i) q^{31} +(-0.832250 - 1.20324i) q^{33} +(0.513903 + 2.59536i) q^{35} +(-1.16085 - 2.01066i) q^{37} +(-0.596185 + 1.25957i) q^{39} -6.25730 q^{41} +5.35419 q^{43} +(-1.05840 + 2.80710i) q^{45} +(3.11317 + 5.39217i) q^{47} +(5.54605 + 4.27098i) q^{49} +(1.12746 - 0.779839i) q^{51} +(-3.57859 - 2.06610i) q^{53} -0.844673i q^{55} +(2.49678 - 0.203986i) q^{57} +(6.26531 - 10.8518i) q^{59} +(2.39276 - 1.38146i) q^{61} +(2.78507 + 7.43259i) q^{63} +(-0.696770 + 0.402280i) q^{65} +(-3.41081 + 5.90770i) q^{67} +(-4.92870 + 0.402675i) q^{69} +13.0053i q^{71} +(-6.52756 - 3.76869i) q^{73} +(-1.42450 + 0.985292i) q^{75} +(-1.47204 - 1.68149i) q^{77} +(-4.91157 - 8.50709i) q^{79} +(-1.76617 + 8.82500i) q^{81} +15.1845 q^{83} +0.791480 q^{85} +(2.63431 - 5.56555i) q^{87} +(-7.43687 - 12.8810i) q^{89} +(-0.685991 + 2.01510i) q^{91} +(-1.65286 - 2.38965i) q^{93} +(1.25255 + 0.723159i) q^{95} -13.9030i q^{97} +(-0.411313 - 2.50042i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 16 q^{5} - 2 q^{7} + 8 q^{9} + 6 q^{19} - 14 q^{21} + 24 q^{23} - 16 q^{25} + 24 q^{27} + 42 q^{31} + 18 q^{33} + 2 q^{35} + 6 q^{37} + 12 q^{39} + 44 q^{41} - 20 q^{43} + 10 q^{45} + 4 q^{47} + 16 q^{49}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/840\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(281\) \(337\) \(421\) \(631\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.56554 + 0.741007i 0.903864 + 0.427820i
\(4\) 0 0
\(5\) 0.500000 + 0.866025i 0.223607 + 0.387298i
\(6\) 0 0
\(7\) 2.50460 + 0.852628i 0.946650 + 0.322263i
\(8\) 0 0
\(9\) 1.90182 + 2.32015i 0.633939 + 0.773383i
\(10\) 0 0
\(11\) −0.731508 0.422337i −0.220558 0.127339i 0.385651 0.922645i \(-0.373977\pi\)
−0.606209 + 0.795306i \(0.707310\pi\)
\(12\) 0 0
\(13\) 0.804561i 0.223145i 0.993756 + 0.111573i \(0.0355887\pi\)
−0.993756 + 0.111573i \(0.964411\pi\)
\(14\) 0 0
\(15\) 0.141038 + 1.72630i 0.0364160 + 0.445728i
\(16\) 0 0
\(17\) 0.395740 0.685442i 0.0959810 0.166244i −0.814037 0.580814i \(-0.802735\pi\)
0.910018 + 0.414570i \(0.136068\pi\)
\(18\) 0 0
\(19\) 1.25255 0.723159i 0.287354 0.165904i −0.349394 0.936976i \(-0.613612\pi\)
0.636748 + 0.771072i \(0.280279\pi\)
\(20\) 0 0
\(21\) 3.28925 + 3.19075i 0.717772 + 0.696278i
\(22\) 0 0
\(23\) −2.47256 + 1.42754i −0.515565 + 0.297662i −0.735118 0.677939i \(-0.762873\pi\)
0.219553 + 0.975601i \(0.429540\pi\)
\(24\) 0 0
\(25\) −0.500000 + 0.866025i −0.100000 + 0.173205i
\(26\) 0 0
\(27\) 1.25812 + 5.04154i 0.242126 + 0.970245i
\(28\) 0 0
\(29\) 3.55504i 0.660154i −0.943954 0.330077i \(-0.892925\pi\)
0.943954 0.330077i \(-0.107075\pi\)
\(30\) 0 0
\(31\) −1.45279 0.838768i −0.260929 0.150647i 0.363830 0.931466i \(-0.381469\pi\)
−0.624758 + 0.780818i \(0.714802\pi\)
\(32\) 0 0
\(33\) −0.832250 1.20324i −0.144876 0.209457i
\(34\) 0 0
\(35\) 0.513903 + 2.59536i 0.0868655 + 0.438696i
\(36\) 0 0
\(37\) −1.16085 2.01066i −0.190843 0.330550i 0.754687 0.656085i \(-0.227789\pi\)
−0.945530 + 0.325535i \(0.894455\pi\)
\(38\) 0 0
\(39\) −0.596185 + 1.25957i −0.0954660 + 0.201693i
\(40\) 0 0
\(41\) −6.25730 −0.977226 −0.488613 0.872501i \(-0.662497\pi\)
−0.488613 + 0.872501i \(0.662497\pi\)
\(42\) 0 0
\(43\) 5.35419 0.816506 0.408253 0.912869i \(-0.366138\pi\)
0.408253 + 0.912869i \(0.366138\pi\)
\(44\) 0 0
\(45\) −1.05840 + 2.80710i −0.157777 + 0.418457i
\(46\) 0 0
\(47\) 3.11317 + 5.39217i 0.454102 + 0.786528i 0.998636 0.0522107i \(-0.0166267\pi\)
−0.544534 + 0.838739i \(0.683293\pi\)
\(48\) 0 0
\(49\) 5.54605 + 4.27098i 0.792293 + 0.610141i
\(50\) 0 0
\(51\) 1.12746 0.779839i 0.157876 0.109199i
\(52\) 0 0
\(53\) −3.57859 2.06610i −0.491557 0.283801i 0.233663 0.972318i \(-0.424929\pi\)
−0.725220 + 0.688517i \(0.758262\pi\)
\(54\) 0 0
\(55\) 0.844673i 0.113896i
\(56\) 0 0
\(57\) 2.49678 0.203986i 0.330706 0.0270187i
\(58\) 0 0
\(59\) 6.26531 10.8518i 0.815674 1.41279i −0.0931697 0.995650i \(-0.529700\pi\)
0.908843 0.417138i \(-0.136967\pi\)
\(60\) 0 0
\(61\) 2.39276 1.38146i 0.306362 0.176878i −0.338936 0.940810i \(-0.610067\pi\)
0.645297 + 0.763932i \(0.276734\pi\)
\(62\) 0 0
\(63\) 2.78507 + 7.43259i 0.350886 + 0.936418i
\(64\) 0 0
\(65\) −0.696770 + 0.402280i −0.0864237 + 0.0498967i
\(66\) 0 0
\(67\) −3.41081 + 5.90770i −0.416697 + 0.721741i −0.995605 0.0936522i \(-0.970146\pi\)
0.578908 + 0.815393i \(0.303479\pi\)
\(68\) 0 0
\(69\) −4.92870 + 0.402675i −0.593346 + 0.0484763i
\(70\) 0 0
\(71\) 13.0053i 1.54345i 0.635958 + 0.771724i \(0.280605\pi\)
−0.635958 + 0.771724i \(0.719395\pi\)
\(72\) 0 0
\(73\) −6.52756 3.76869i −0.763993 0.441091i 0.0667347 0.997771i \(-0.478742\pi\)
−0.830727 + 0.556679i \(0.812075\pi\)
\(74\) 0 0
\(75\) −1.42450 + 0.985292i −0.164487 + 0.113772i
\(76\) 0 0
\(77\) −1.47204 1.68149i −0.167755 0.191623i
\(78\) 0 0
\(79\) −4.91157 8.50709i −0.552595 0.957122i −0.998086 0.0618363i \(-0.980304\pi\)
0.445491 0.895286i \(-0.353029\pi\)
\(80\) 0 0
\(81\) −1.76617 + 8.82500i −0.196241 + 0.980556i
\(82\) 0 0
\(83\) 15.1845 1.66672 0.833358 0.552733i \(-0.186415\pi\)
0.833358 + 0.552733i \(0.186415\pi\)
\(84\) 0 0
\(85\) 0.791480 0.0858480
\(86\) 0 0
\(87\) 2.63431 5.56555i 0.282427 0.596689i
\(88\) 0 0
\(89\) −7.43687 12.8810i −0.788306 1.36539i −0.927004 0.375052i \(-0.877625\pi\)
0.138698 0.990335i \(-0.455708\pi\)
\(90\) 0 0
\(91\) −0.685991 + 2.01510i −0.0719114 + 0.211240i
\(92\) 0 0
\(93\) −1.65286 2.38965i −0.171394 0.247795i
\(94\) 0 0
\(95\) 1.25255 + 0.723159i 0.128509 + 0.0741945i
\(96\) 0 0
\(97\) 13.9030i 1.41164i −0.708391 0.705820i \(-0.750579\pi\)
0.708391 0.705820i \(-0.249421\pi\)
\(98\) 0 0
\(99\) −0.411313 2.50042i −0.0413385 0.251301i
\(100\) 0 0
\(101\) −9.16337 + 15.8714i −0.911789 + 1.57926i −0.100254 + 0.994962i \(0.531965\pi\)
−0.811536 + 0.584303i \(0.801368\pi\)
\(102\) 0 0
\(103\) 0.227036 0.131079i 0.0223705 0.0129156i −0.488773 0.872411i \(-0.662555\pi\)
0.511144 + 0.859495i \(0.329222\pi\)
\(104\) 0 0
\(105\) −1.11865 + 4.44394i −0.109169 + 0.433684i
\(106\) 0 0
\(107\) 8.09189 4.67185i 0.782272 0.451645i −0.0549626 0.998488i \(-0.517504\pi\)
0.837235 + 0.546843i \(0.184171\pi\)
\(108\) 0 0
\(109\) −3.10494 + 5.37791i −0.297399 + 0.515110i −0.975540 0.219822i \(-0.929452\pi\)
0.678141 + 0.734932i \(0.262786\pi\)
\(110\) 0 0
\(111\) −0.327450 4.00796i −0.0310802 0.380418i
\(112\) 0 0
\(113\) 10.3445i 0.973128i −0.873645 0.486564i \(-0.838250\pi\)
0.873645 0.486564i \(-0.161750\pi\)
\(114\) 0 0
\(115\) −2.47256 1.42754i −0.230568 0.133118i
\(116\) 0 0
\(117\) −1.86670 + 1.53013i −0.172576 + 0.141460i
\(118\) 0 0
\(119\) 1.57560 1.37934i 0.144435 0.126444i
\(120\) 0 0
\(121\) −5.14326 8.90839i −0.467569 0.809854i
\(122\) 0 0
\(123\) −9.79604 4.63670i −0.883279 0.418077i
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) 6.55673 0.581816 0.290908 0.956751i \(-0.406043\pi\)
0.290908 + 0.956751i \(0.406043\pi\)
\(128\) 0 0
\(129\) 8.38219 + 3.96749i 0.738010 + 0.349318i
\(130\) 0 0
\(131\) 9.96153 + 17.2539i 0.870343 + 1.50748i 0.861643 + 0.507515i \(0.169436\pi\)
0.00869979 + 0.999962i \(0.497231\pi\)
\(132\) 0 0
\(133\) 3.75372 0.743267i 0.325489 0.0644494i
\(134\) 0 0
\(135\) −3.73704 + 3.61034i −0.321633 + 0.310728i
\(136\) 0 0
\(137\) −4.72888 2.73022i −0.404015 0.233258i 0.284200 0.958765i \(-0.408272\pi\)
−0.688215 + 0.725507i \(0.741605\pi\)
\(138\) 0 0
\(139\) 17.3682i 1.47315i −0.676357 0.736574i \(-0.736442\pi\)
0.676357 0.736574i \(-0.263558\pi\)
\(140\) 0 0
\(141\) 0.878153 + 10.7485i 0.0739538 + 0.905188i
\(142\) 0 0
\(143\) 0.339795 0.588543i 0.0284151 0.0492164i
\(144\) 0 0
\(145\) 3.07875 1.77752i 0.255677 0.147615i
\(146\) 0 0
\(147\) 5.51773 + 10.7960i 0.455094 + 0.890443i
\(148\) 0 0
\(149\) −1.39720 + 0.806672i −0.114463 + 0.0660852i −0.556138 0.831090i \(-0.687718\pi\)
0.441676 + 0.897175i \(0.354384\pi\)
\(150\) 0 0
\(151\) −0.497773 + 0.862168i −0.0405082 + 0.0701623i −0.885569 0.464508i \(-0.846231\pi\)
0.845060 + 0.534671i \(0.179564\pi\)
\(152\) 0 0
\(153\) 2.34295 0.385410i 0.189416 0.0311586i
\(154\) 0 0
\(155\) 1.67754i 0.134743i
\(156\) 0 0
\(157\) −11.2973 6.52248i −0.901620 0.520550i −0.0238944 0.999714i \(-0.507607\pi\)
−0.877725 + 0.479164i \(0.840940\pi\)
\(158\) 0 0
\(159\) −4.07143 5.88632i −0.322885 0.466816i
\(160\) 0 0
\(161\) −7.40994 + 1.46723i −0.583985 + 0.115634i
\(162\) 0 0
\(163\) −7.00756 12.1375i −0.548875 0.950679i −0.998352 0.0573870i \(-0.981723\pi\)
0.449477 0.893292i \(-0.351610\pi\)
\(164\) 0 0
\(165\) 0.625908 1.32237i 0.0487269 0.102946i
\(166\) 0 0
\(167\) −3.39763 −0.262917 −0.131458 0.991322i \(-0.541966\pi\)
−0.131458 + 0.991322i \(0.541966\pi\)
\(168\) 0 0
\(169\) 12.3527 0.950206
\(170\) 0 0
\(171\) 4.05995 + 1.53078i 0.310472 + 0.117062i
\(172\) 0 0
\(173\) −2.49825 4.32709i −0.189938 0.328983i 0.755291 0.655389i \(-0.227495\pi\)
−0.945229 + 0.326407i \(0.894162\pi\)
\(174\) 0 0
\(175\) −1.99070 + 1.74273i −0.150483 + 0.131738i
\(176\) 0 0
\(177\) 17.8499 12.3463i 1.34168 0.928006i
\(178\) 0 0
\(179\) 13.6504 + 7.88106i 1.02028 + 0.589058i 0.914185 0.405298i \(-0.132832\pi\)
0.106094 + 0.994356i \(0.466166\pi\)
\(180\) 0 0
\(181\) 16.3223i 1.21322i −0.794998 0.606612i \(-0.792528\pi\)
0.794998 0.606612i \(-0.207472\pi\)
\(182\) 0 0
\(183\) 4.76963 0.389678i 0.352581 0.0288058i
\(184\) 0 0
\(185\) 1.16085 2.01066i 0.0853476 0.147826i
\(186\) 0 0
\(187\) −0.578974 + 0.334271i −0.0423388 + 0.0244443i
\(188\) 0 0
\(189\) −1.14746 + 13.6998i −0.0834653 + 0.996511i
\(190\) 0 0
\(191\) −20.2436 + 11.6876i −1.46478 + 0.845688i −0.999226 0.0393335i \(-0.987477\pi\)
−0.465549 + 0.885022i \(0.654143\pi\)
\(192\) 0 0
\(193\) −3.25242 + 5.63336i −0.234114 + 0.405498i −0.959015 0.283355i \(-0.908552\pi\)
0.724900 + 0.688854i \(0.241886\pi\)
\(194\) 0 0
\(195\) −1.38891 + 0.113474i −0.0994621 + 0.00812604i
\(196\) 0 0
\(197\) 11.4637i 0.816752i −0.912814 0.408376i \(-0.866095\pi\)
0.912814 0.408376i \(-0.133905\pi\)
\(198\) 0 0
\(199\) −17.7667 10.2576i −1.25945 0.727142i −0.286480 0.958086i \(-0.592485\pi\)
−0.972967 + 0.230944i \(0.925819\pi\)
\(200\) 0 0
\(201\) −9.71741 + 6.72130i −0.685413 + 0.474084i
\(202\) 0 0
\(203\) 3.03112 8.90395i 0.212743 0.624935i
\(204\) 0 0
\(205\) −3.12865 5.41898i −0.218514 0.378478i
\(206\) 0 0
\(207\) −8.01446 3.02180i −0.557043 0.210030i
\(208\) 0 0
\(209\) −1.22167 −0.0845044
\(210\) 0 0
\(211\) 5.90017 0.406184 0.203092 0.979160i \(-0.434901\pi\)
0.203092 + 0.979160i \(0.434901\pi\)
\(212\) 0 0
\(213\) −9.63703 + 20.3603i −0.660318 + 1.39507i
\(214\) 0 0
\(215\) 2.67709 + 4.63686i 0.182576 + 0.316232i
\(216\) 0 0
\(217\) −2.92350 3.33947i −0.198460 0.226698i
\(218\) 0 0
\(219\) −7.42652 10.7370i −0.501837 0.725538i
\(220\) 0 0
\(221\) 0.551479 + 0.318397i 0.0370965 + 0.0214177i
\(222\) 0 0
\(223\) 16.9239i 1.13331i −0.823956 0.566654i \(-0.808238\pi\)
0.823956 0.566654i \(-0.191762\pi\)
\(224\) 0 0
\(225\) −2.96022 + 0.486949i −0.197348 + 0.0324633i
\(226\) 0 0
\(227\) 10.1061 17.5042i 0.670764 1.16180i −0.306924 0.951734i \(-0.599300\pi\)
0.977688 0.210063i \(-0.0673668\pi\)
\(228\) 0 0
\(229\) −14.2204 + 8.21013i −0.939707 + 0.542540i −0.889869 0.456217i \(-0.849204\pi\)
−0.0498389 + 0.998757i \(0.515871\pi\)
\(230\) 0 0
\(231\) −1.05854 3.72323i −0.0696469 0.244970i
\(232\) 0 0
\(233\) 8.74100 5.04662i 0.572642 0.330615i −0.185562 0.982633i \(-0.559410\pi\)
0.758204 + 0.652018i \(0.226077\pi\)
\(234\) 0 0
\(235\) −3.11317 + 5.39217i −0.203081 + 0.351746i
\(236\) 0 0
\(237\) −1.38544 16.9577i −0.0899941 1.10152i
\(238\) 0 0
\(239\) 7.87661i 0.509496i 0.967007 + 0.254748i \(0.0819925\pi\)
−0.967007 + 0.254748i \(0.918008\pi\)
\(240\) 0 0
\(241\) −21.0642 12.1614i −1.35687 0.783388i −0.367667 0.929958i \(-0.619843\pi\)
−0.989200 + 0.146570i \(0.953177\pi\)
\(242\) 0 0
\(243\) −9.30439 + 12.5071i −0.596877 + 0.802333i
\(244\) 0 0
\(245\) −0.925755 + 6.93851i −0.0591443 + 0.443285i
\(246\) 0 0
\(247\) 0.581825 + 1.00775i 0.0370206 + 0.0641216i
\(248\) 0 0
\(249\) 23.7719 + 11.2518i 1.50648 + 0.713055i
\(250\) 0 0
\(251\) −6.88663 −0.434680 −0.217340 0.976096i \(-0.569738\pi\)
−0.217340 + 0.976096i \(0.569738\pi\)
\(252\) 0 0
\(253\) 2.41160 0.151616
\(254\) 0 0
\(255\) 1.23909 + 0.586492i 0.0775949 + 0.0367275i
\(256\) 0 0
\(257\) −9.31053 16.1263i −0.580775 1.00593i −0.995388 0.0959335i \(-0.969416\pi\)
0.414613 0.909998i \(-0.363917\pi\)
\(258\) 0 0
\(259\) −1.19313 6.02567i −0.0741376 0.374417i
\(260\) 0 0
\(261\) 8.24822 6.76104i 0.510552 0.418498i
\(262\) 0 0
\(263\) 0.560405 + 0.323550i 0.0345561 + 0.0199510i 0.517179 0.855878i \(-0.326982\pi\)
−0.482622 + 0.875829i \(0.660316\pi\)
\(264\) 0 0
\(265\) 4.13220i 0.253839i
\(266\) 0 0
\(267\) −2.09777 25.6765i −0.128381 1.57138i
\(268\) 0 0
\(269\) 1.55153 2.68732i 0.0945982 0.163849i −0.814843 0.579682i \(-0.803177\pi\)
0.909441 + 0.415833i \(0.136510\pi\)
\(270\) 0 0
\(271\) −17.2290 + 9.94715i −1.04658 + 0.604246i −0.921691 0.387924i \(-0.873192\pi\)
−0.124894 + 0.992170i \(0.539859\pi\)
\(272\) 0 0
\(273\) −2.56715 + 2.64640i −0.155371 + 0.160167i
\(274\) 0 0
\(275\) 0.731508 0.422337i 0.0441116 0.0254679i
\(276\) 0 0
\(277\) 1.21962 2.11245i 0.0732801 0.126925i −0.827057 0.562118i \(-0.809987\pi\)
0.900337 + 0.435193i \(0.143320\pi\)
\(278\) 0 0
\(279\) −0.816875 4.96587i −0.0489050 0.297299i
\(280\) 0 0
\(281\) 15.6270i 0.932227i 0.884725 + 0.466113i \(0.154346\pi\)
−0.884725 + 0.466113i \(0.845654\pi\)
\(282\) 0 0
\(283\) −10.7860 6.22732i −0.641163 0.370176i 0.143899 0.989592i \(-0.454036\pi\)
−0.785062 + 0.619417i \(0.787369\pi\)
\(284\) 0 0
\(285\) 1.42505 + 2.06028i 0.0844124 + 0.122040i
\(286\) 0 0
\(287\) −15.6720 5.33515i −0.925091 0.314924i
\(288\) 0 0
\(289\) 8.18678 + 14.1799i 0.481575 + 0.834113i
\(290\) 0 0
\(291\) 10.3022 21.7657i 0.603928 1.27593i
\(292\) 0 0
\(293\) 22.4053 1.30893 0.654464 0.756093i \(-0.272894\pi\)
0.654464 + 0.756093i \(0.272894\pi\)
\(294\) 0 0
\(295\) 12.5306 0.729561
\(296\) 0 0
\(297\) 1.20890 4.21928i 0.0701474 0.244827i
\(298\) 0 0
\(299\) −1.14854 1.98933i −0.0664217 0.115046i
\(300\) 0 0
\(301\) 13.4101 + 4.56513i 0.772946 + 0.263130i
\(302\) 0 0
\(303\) −26.1064 + 18.0572i −1.49977 + 1.03736i
\(304\) 0 0
\(305\) 2.39276 + 1.38146i 0.137009 + 0.0791022i
\(306\) 0 0
\(307\) 8.19542i 0.467738i 0.972268 + 0.233869i \(0.0751386\pi\)
−0.972268 + 0.233869i \(0.924861\pi\)
\(308\) 0 0
\(309\) 0.452564 0.0369744i 0.0257455 0.00210340i
\(310\) 0 0
\(311\) −8.67007 + 15.0170i −0.491635 + 0.851536i −0.999954 0.00963275i \(-0.996934\pi\)
0.508319 + 0.861169i \(0.330267\pi\)
\(312\) 0 0
\(313\) −1.97581 + 1.14073i −0.111679 + 0.0644781i −0.554799 0.831984i \(-0.687205\pi\)
0.443120 + 0.896462i \(0.353872\pi\)
\(314\) 0 0
\(315\) −5.04427 + 6.12824i −0.284213 + 0.345287i
\(316\) 0 0
\(317\) 24.1048 13.9169i 1.35386 0.781651i 0.365072 0.930979i \(-0.381044\pi\)
0.988788 + 0.149328i \(0.0477109\pi\)
\(318\) 0 0
\(319\) −1.50142 + 2.60054i −0.0840635 + 0.145602i
\(320\) 0 0
\(321\) 16.1300 1.31782i 0.900291 0.0735537i
\(322\) 0 0
\(323\) 1.14473i 0.0636945i
\(324\) 0 0
\(325\) −0.696770 0.402280i −0.0386499 0.0223145i
\(326\) 0 0
\(327\) −8.84596 + 6.11854i −0.489183 + 0.338356i
\(328\) 0 0
\(329\) 3.19973 + 16.1596i 0.176407 + 0.890907i
\(330\) 0 0
\(331\) 13.0938 + 22.6792i 0.719702 + 1.24656i 0.961118 + 0.276138i \(0.0890547\pi\)
−0.241416 + 0.970422i \(0.577612\pi\)
\(332\) 0 0
\(333\) 2.45729 6.51725i 0.134659 0.357143i
\(334\) 0 0
\(335\) −6.82163 −0.372705
\(336\) 0 0
\(337\) 28.1999 1.53614 0.768072 0.640363i \(-0.221216\pi\)
0.768072 + 0.640363i \(0.221216\pi\)
\(338\) 0 0
\(339\) 7.66534 16.1947i 0.416324 0.879575i
\(340\) 0 0
\(341\) 0.708485 + 1.22713i 0.0383666 + 0.0664529i
\(342\) 0 0
\(343\) 10.2491 + 15.4258i 0.553399 + 0.832917i
\(344\) 0 0
\(345\) −2.81308 4.06705i −0.151451 0.218962i
\(346\) 0 0
\(347\) −23.2148 13.4031i −1.24624 0.719514i −0.275879 0.961192i \(-0.588969\pi\)
−0.970356 + 0.241678i \(0.922302\pi\)
\(348\) 0 0
\(349\) 9.13263i 0.488859i 0.969667 + 0.244429i \(0.0786006\pi\)
−0.969667 + 0.244429i \(0.921399\pi\)
\(350\) 0 0
\(351\) −4.05623 + 1.01224i −0.216505 + 0.0540292i
\(352\) 0 0
\(353\) −6.16778 + 10.6829i −0.328278 + 0.568594i −0.982170 0.187994i \(-0.939802\pi\)
0.653892 + 0.756588i \(0.273135\pi\)
\(354\) 0 0
\(355\) −11.2629 + 6.50266i −0.597775 + 0.345125i
\(356\) 0 0
\(357\) 3.48876 0.991880i 0.184645 0.0524958i
\(358\) 0 0
\(359\) −30.5654 + 17.6469i −1.61318 + 0.931370i −0.624553 + 0.780982i \(0.714719\pi\)
−0.988627 + 0.150388i \(0.951948\pi\)
\(360\) 0 0
\(361\) −8.45408 + 14.6429i −0.444952 + 0.770679i
\(362\) 0 0
\(363\) −1.45080 17.7576i −0.0761470 0.932033i
\(364\) 0 0
\(365\) 7.53737i 0.394524i
\(366\) 0 0
\(367\) 12.9825 + 7.49544i 0.677681 + 0.391259i 0.798981 0.601357i \(-0.205373\pi\)
−0.121300 + 0.992616i \(0.538706\pi\)
\(368\) 0 0
\(369\) −11.9002 14.5179i −0.619502 0.755770i
\(370\) 0 0
\(371\) −7.20133 8.22597i −0.373874 0.427071i
\(372\) 0 0
\(373\) 13.9629 + 24.1845i 0.722973 + 1.25223i 0.959803 + 0.280675i \(0.0905584\pi\)
−0.236829 + 0.971551i \(0.576108\pi\)
\(374\) 0 0
\(375\) −1.56554 0.741007i −0.0808440 0.0382654i
\(376\) 0 0
\(377\) 2.86024 0.147310
\(378\) 0 0
\(379\) 24.2621 1.24626 0.623130 0.782118i \(-0.285861\pi\)
0.623130 + 0.782118i \(0.285861\pi\)
\(380\) 0 0
\(381\) 10.2648 + 4.85858i 0.525882 + 0.248913i
\(382\) 0 0
\(383\) 1.03247 + 1.78829i 0.0527568 + 0.0913774i 0.891198 0.453615i \(-0.149866\pi\)
−0.838441 + 0.544992i \(0.816533\pi\)
\(384\) 0 0
\(385\) 0.720192 2.11557i 0.0367044 0.107819i
\(386\) 0 0
\(387\) 10.1827 + 12.4225i 0.517616 + 0.631472i
\(388\) 0 0
\(389\) 19.4560 + 11.2329i 0.986460 + 0.569533i 0.904214 0.427079i \(-0.140457\pi\)
0.0822460 + 0.996612i \(0.473791\pi\)
\(390\) 0 0
\(391\) 2.25973i 0.114279i
\(392\) 0 0
\(393\) 2.80992 + 34.3931i 0.141742 + 1.73490i
\(394\) 0 0
\(395\) 4.91157 8.50709i 0.247128 0.428038i
\(396\) 0 0
\(397\) −21.2728 + 12.2818i −1.06765 + 0.616408i −0.927538 0.373728i \(-0.878079\pi\)
−0.140112 + 0.990136i \(0.544746\pi\)
\(398\) 0 0
\(399\) 6.42735 + 1.61792i 0.321770 + 0.0809971i
\(400\) 0 0
\(401\) −2.17015 + 1.25294i −0.108372 + 0.0625686i −0.553206 0.833044i \(-0.686596\pi\)
0.444834 + 0.895613i \(0.353263\pi\)
\(402\) 0 0
\(403\) 0.674840 1.16886i 0.0336162 0.0582249i
\(404\) 0 0
\(405\) −8.52576 + 2.88295i −0.423648 + 0.143255i
\(406\) 0 0
\(407\) 1.96108i 0.0972072i
\(408\) 0 0
\(409\) 13.7159 + 7.91885i 0.678205 + 0.391562i 0.799178 0.601094i \(-0.205268\pi\)
−0.120973 + 0.992656i \(0.538602\pi\)
\(410\) 0 0
\(411\) −5.38013 7.77839i −0.265382 0.383680i
\(412\) 0 0
\(413\) 24.9447 21.8375i 1.22745 1.07455i
\(414\) 0 0
\(415\) 7.59225 + 13.1502i 0.372689 + 0.645516i
\(416\) 0 0
\(417\) 12.8699 27.1905i 0.630243 1.33153i
\(418\) 0 0
\(419\) −15.0218 −0.733864 −0.366932 0.930248i \(-0.619592\pi\)
−0.366932 + 0.930248i \(0.619592\pi\)
\(420\) 0 0
\(421\) 39.9642 1.94774 0.973868 0.227117i \(-0.0729299\pi\)
0.973868 + 0.227117i \(0.0729299\pi\)
\(422\) 0 0
\(423\) −6.58994 + 17.4779i −0.320414 + 0.849806i
\(424\) 0 0
\(425\) 0.395740 + 0.685442i 0.0191962 + 0.0332488i
\(426\) 0 0
\(427\) 7.17078 1.41987i 0.347018 0.0687125i
\(428\) 0 0
\(429\) 0.968077 0.669596i 0.0467392 0.0323284i
\(430\) 0 0
\(431\) 4.22505 + 2.43933i 0.203513 + 0.117499i 0.598293 0.801277i \(-0.295846\pi\)
−0.394780 + 0.918776i \(0.629179\pi\)
\(432\) 0 0
\(433\) 26.9452i 1.29490i 0.762106 + 0.647452i \(0.224165\pi\)
−0.762106 + 0.647452i \(0.775835\pi\)
\(434\) 0 0
\(435\) 6.13706 0.501397i 0.294249 0.0240402i
\(436\) 0 0
\(437\) −2.06467 + 3.57611i −0.0987665 + 0.171069i
\(438\) 0 0
\(439\) 8.94245 5.16293i 0.426800 0.246413i −0.271182 0.962528i \(-0.587415\pi\)
0.697982 + 0.716115i \(0.254081\pi\)
\(440\) 0 0
\(441\) 0.638267 + 20.9903i 0.0303937 + 0.999538i
\(442\) 0 0
\(443\) 18.5261 10.6961i 0.880203 0.508186i 0.00947789 0.999955i \(-0.496983\pi\)
0.870725 + 0.491769i \(0.163650\pi\)
\(444\) 0 0
\(445\) 7.43687 12.8810i 0.352541 0.610619i
\(446\) 0 0
\(447\) −2.78512 + 0.227544i −0.131731 + 0.0107624i
\(448\) 0 0
\(449\) 10.0887i 0.476116i 0.971251 + 0.238058i \(0.0765109\pi\)
−0.971251 + 0.238058i \(0.923489\pi\)
\(450\) 0 0
\(451\) 4.57727 + 2.64269i 0.215535 + 0.124439i
\(452\) 0 0
\(453\) −1.41816 + 0.980904i −0.0666308 + 0.0460869i
\(454\) 0 0
\(455\) −2.08813 + 0.413466i −0.0978929 + 0.0193836i
\(456\) 0 0
\(457\) 5.33179 + 9.23494i 0.249411 + 0.431992i 0.963362 0.268203i \(-0.0864297\pi\)
−0.713952 + 0.700195i \(0.753096\pi\)
\(458\) 0 0
\(459\) 3.95357 + 1.13277i 0.184537 + 0.0528731i
\(460\) 0 0
\(461\) −10.8662 −0.506091 −0.253045 0.967454i \(-0.581432\pi\)
−0.253045 + 0.967454i \(0.581432\pi\)
\(462\) 0 0
\(463\) 26.9175 1.25096 0.625481 0.780240i \(-0.284903\pi\)
0.625481 + 0.780240i \(0.284903\pi\)
\(464\) 0 0
\(465\) 1.24307 2.62625i 0.0576458 0.121789i
\(466\) 0 0
\(467\) 19.3269 + 33.4752i 0.894343 + 1.54905i 0.834616 + 0.550833i \(0.185690\pi\)
0.0597271 + 0.998215i \(0.480977\pi\)
\(468\) 0 0
\(469\) −13.5798 + 11.8883i −0.627057 + 0.548950i
\(470\) 0 0
\(471\) −12.8531 18.5825i −0.592239 0.856238i
\(472\) 0 0
\(473\) −3.91663 2.26127i −0.180087 0.103973i
\(474\) 0 0
\(475\) 1.44632i 0.0663616i
\(476\) 0 0
\(477\) −2.01217 12.2322i −0.0921311 0.560075i
\(478\) 0 0
\(479\) 7.95661 13.7813i 0.363547 0.629682i −0.624995 0.780629i \(-0.714899\pi\)
0.988542 + 0.150947i \(0.0482323\pi\)
\(480\) 0 0
\(481\) 1.61769 0.933977i 0.0737605 0.0425857i
\(482\) 0 0
\(483\) −12.6878 3.19381i −0.577314 0.145323i
\(484\) 0 0
\(485\) 12.0404 6.95152i 0.546726 0.315652i
\(486\) 0 0
\(487\) −12.8179 + 22.2012i −0.580832 + 1.00603i 0.414548 + 0.910027i \(0.363940\pi\)
−0.995381 + 0.0960041i \(0.969394\pi\)
\(488\) 0 0
\(489\) −1.97667 24.1943i −0.0893882 1.09410i
\(490\) 0 0
\(491\) 6.18969i 0.279337i −0.990198 0.139668i \(-0.955396\pi\)
0.990198 0.139668i \(-0.0446036\pi\)
\(492\) 0 0
\(493\) −2.43677 1.40687i −0.109747 0.0633623i
\(494\) 0 0
\(495\) 1.95977 1.60641i 0.0880850 0.0722030i
\(496\) 0 0
\(497\) −11.0887 + 32.5731i −0.497396 + 1.46110i
\(498\) 0 0
\(499\) 7.61308 + 13.1862i 0.340808 + 0.590297i 0.984583 0.174918i \(-0.0559660\pi\)
−0.643775 + 0.765215i \(0.722633\pi\)
\(500\) 0 0
\(501\) −5.31912 2.51767i −0.237641 0.112481i
\(502\) 0 0
\(503\) 18.4999 0.824871 0.412435 0.910987i \(-0.364678\pi\)
0.412435 + 0.910987i \(0.364678\pi\)
\(504\) 0 0
\(505\) −18.3267 −0.815529
\(506\) 0 0
\(507\) 19.3386 + 9.15342i 0.858857 + 0.406518i
\(508\) 0 0
\(509\) −16.3241 28.2741i −0.723551 1.25323i −0.959568 0.281478i \(-0.909175\pi\)
0.236017 0.971749i \(-0.424158\pi\)
\(510\) 0 0
\(511\) −13.1356 15.0046i −0.581086 0.663766i
\(512\) 0 0
\(513\) 5.22169 + 5.40495i 0.230543 + 0.238634i
\(514\) 0 0
\(515\) 0.227036 + 0.131079i 0.0100044 + 0.00577604i
\(516\) 0 0
\(517\) 5.25922i 0.231300i
\(518\) 0 0
\(519\) −0.704698 8.62545i −0.0309328 0.378615i
\(520\) 0 0
\(521\) −12.7318 + 22.0521i −0.557789 + 0.966120i 0.439891 + 0.898051i \(0.355017\pi\)
−0.997681 + 0.0680685i \(0.978316\pi\)
\(522\) 0 0
\(523\) −25.2213 + 14.5615i −1.10285 + 0.636732i −0.936969 0.349414i \(-0.886381\pi\)
−0.165883 + 0.986145i \(0.553047\pi\)
\(524\) 0 0
\(525\) −4.40789 + 1.25320i −0.192376 + 0.0546940i
\(526\) 0 0
\(527\) −1.14985 + 0.663868i −0.0500884 + 0.0289185i
\(528\) 0 0
\(529\) −7.42429 + 12.8592i −0.322795 + 0.559097i
\(530\) 0 0
\(531\) 37.0933 6.10177i 1.60971 0.264794i
\(532\) 0 0
\(533\) 5.03438i 0.218063i
\(534\) 0 0
\(535\) 8.09189 + 4.67185i 0.349843 + 0.201982i
\(536\) 0 0
\(537\) 15.5303 + 22.4531i 0.670182 + 0.968924i
\(538\) 0 0
\(539\) −2.25319 5.46656i −0.0970518 0.235461i
\(540\) 0 0
\(541\) 10.0754 + 17.4511i 0.433174 + 0.750279i 0.997145 0.0755154i \(-0.0240602\pi\)
−0.563971 + 0.825795i \(0.690727\pi\)
\(542\) 0 0
\(543\) 12.0949 25.5531i 0.519042 1.09659i
\(544\) 0 0
\(545\) −6.20987 −0.266002
\(546\) 0 0
\(547\) 13.7371 0.587356 0.293678 0.955904i \(-0.405121\pi\)
0.293678 + 0.955904i \(0.405121\pi\)
\(548\) 0 0
\(549\) 7.75579 + 2.92427i 0.331009 + 0.124805i
\(550\) 0 0
\(551\) −2.57086 4.45286i −0.109522 0.189698i
\(552\) 0 0
\(553\) −5.04814 25.4946i −0.214669 1.08414i
\(554\) 0 0
\(555\) 3.30727 2.28756i 0.140386 0.0971015i
\(556\) 0 0
\(557\) −23.6015 13.6263i −1.00003 0.577366i −0.0917703 0.995780i \(-0.529253\pi\)
−0.908256 + 0.418415i \(0.862586\pi\)
\(558\) 0 0
\(559\) 4.30777i 0.182199i
\(560\) 0 0
\(561\) −1.15410 + 0.0942901i −0.0487263 + 0.00398093i
\(562\) 0 0
\(563\) 11.1813 19.3666i 0.471236 0.816205i −0.528222 0.849106i \(-0.677141\pi\)
0.999459 + 0.0329009i \(0.0104746\pi\)
\(564\) 0 0
\(565\) 8.95859 5.17224i 0.376891 0.217598i
\(566\) 0 0
\(567\) −11.9480 + 20.5972i −0.501769 + 0.865002i
\(568\) 0 0
\(569\) −26.1319 + 15.0873i −1.09551 + 0.632492i −0.935037 0.354549i \(-0.884634\pi\)
−0.160470 + 0.987041i \(0.551301\pi\)
\(570\) 0 0
\(571\) −5.42037 + 9.38836i −0.226836 + 0.392891i −0.956869 0.290521i \(-0.906171\pi\)
0.730033 + 0.683412i \(0.239505\pi\)
\(572\) 0 0
\(573\) −40.3527 + 3.29682i −1.68576 + 0.137726i
\(574\) 0 0
\(575\) 2.85507i 0.119065i
\(576\) 0 0
\(577\) −19.0647 11.0070i −0.793676 0.458229i 0.0475793 0.998867i \(-0.484849\pi\)
−0.841255 + 0.540639i \(0.818183\pi\)
\(578\) 0 0
\(579\) −9.26615 + 6.40917i −0.385088 + 0.266356i
\(580\) 0 0
\(581\) 38.0311 + 12.9467i 1.57780 + 0.537121i
\(582\) 0 0
\(583\) 1.74518 + 3.02274i 0.0722780 + 0.125189i
\(584\) 0 0
\(585\) −2.25848 0.851545i −0.0933767 0.0352071i
\(586\) 0 0
\(587\) 4.90442 0.202427 0.101213 0.994865i \(-0.467727\pi\)
0.101213 + 0.994865i \(0.467727\pi\)
\(588\) 0 0
\(589\) −2.42625 −0.0999719
\(590\) 0 0
\(591\) 8.49465 17.9468i 0.349423 0.738233i
\(592\) 0 0
\(593\) −12.6559 21.9207i −0.519715 0.900173i −0.999737 0.0229168i \(-0.992705\pi\)
0.480022 0.877256i \(-0.340629\pi\)
\(594\) 0 0
\(595\) 1.98234 + 0.674838i 0.0812681 + 0.0276656i
\(596\) 0 0
\(597\) −20.2135 29.2239i −0.827283 1.19605i
\(598\) 0 0
\(599\) 41.2486 + 23.8149i 1.68537 + 0.973050i 0.957983 + 0.286826i \(0.0926001\pi\)
0.727390 + 0.686224i \(0.240733\pi\)
\(600\) 0 0
\(601\) 3.74676i 0.152834i 0.997076 + 0.0764168i \(0.0243480\pi\)
−0.997076 + 0.0764168i \(0.975652\pi\)
\(602\) 0 0
\(603\) −20.1935 + 3.32179i −0.822343 + 0.135274i
\(604\) 0 0
\(605\) 5.14326 8.90839i 0.209103 0.362178i
\(606\) 0 0
\(607\) 4.50028 2.59824i 0.182661 0.105459i −0.405881 0.913926i \(-0.633035\pi\)
0.588542 + 0.808467i \(0.299702\pi\)
\(608\) 0 0
\(609\) 11.3432 11.6934i 0.459651 0.473840i
\(610\) 0 0
\(611\) −4.33833 + 2.50473i −0.175510 + 0.101331i
\(612\) 0 0
\(613\) −15.0561 + 26.0779i −0.608110 + 1.05328i 0.383441 + 0.923565i \(0.374739\pi\)
−0.991552 + 0.129713i \(0.958595\pi\)
\(614\) 0 0
\(615\) −0.882520 10.8020i −0.0355866 0.435577i
\(616\) 0 0
\(617\) 26.3310i 1.06005i 0.847983 + 0.530023i \(0.177817\pi\)
−0.847983 + 0.530023i \(0.822183\pi\)
\(618\) 0 0
\(619\) −8.92887 5.15509i −0.358882 0.207200i 0.309708 0.950832i \(-0.399769\pi\)
−0.668590 + 0.743631i \(0.733102\pi\)
\(620\) 0 0
\(621\) −10.3078 10.6695i −0.413636 0.428153i
\(622\) 0 0
\(623\) −7.64366 38.6027i −0.306237 1.54659i
\(624\) 0 0
\(625\) −0.500000 0.866025i −0.0200000 0.0346410i
\(626\) 0 0
\(627\) −1.91256 0.905262i −0.0763804 0.0361527i
\(628\) 0 0
\(629\) −1.83758 −0.0732692
\(630\) 0 0
\(631\) −32.9456 −1.31154 −0.655771 0.754960i \(-0.727656\pi\)
−0.655771 + 0.754960i \(0.727656\pi\)
\(632\) 0 0
\(633\) 9.23694 + 4.37206i 0.367135 + 0.173774i
\(634\) 0 0
\(635\) 3.27837 + 5.67830i 0.130098 + 0.225336i
\(636\) 0 0
\(637\) −3.43627 + 4.46214i −0.136150 + 0.176796i
\(638\) 0 0
\(639\) −30.1743 + 24.7338i −1.19368 + 0.978452i
\(640\) 0 0
\(641\) −34.8388 20.1142i −1.37605 0.794462i −0.384368 0.923180i \(-0.625581\pi\)
−0.991681 + 0.128718i \(0.958914\pi\)
\(642\) 0 0
\(643\) 26.7432i 1.05465i −0.849664 0.527324i \(-0.823196\pi\)
0.849664 0.527324i \(-0.176804\pi\)
\(644\) 0 0
\(645\) 0.755147 + 9.24293i 0.0297339 + 0.363940i
\(646\) 0 0
\(647\) −12.9715 + 22.4672i −0.509961 + 0.883278i 0.489972 + 0.871738i \(0.337007\pi\)
−0.999933 + 0.0115404i \(0.996326\pi\)
\(648\) 0 0
\(649\) −9.16625 + 5.29214i −0.359807 + 0.207735i
\(650\) 0 0
\(651\) −2.10228 7.39439i −0.0823949 0.289809i
\(652\) 0 0
\(653\) 9.06788 5.23534i 0.354854 0.204875i −0.311967 0.950093i \(-0.600988\pi\)
0.666821 + 0.745218i \(0.267655\pi\)
\(654\) 0 0
\(655\) −9.96153 + 17.2539i −0.389229 + 0.674164i
\(656\) 0 0
\(657\) −3.67032 22.3123i −0.143193 0.870484i
\(658\) 0 0
\(659\) 5.02313i 0.195673i 0.995202 + 0.0978366i \(0.0311923\pi\)
−0.995202 + 0.0978366i \(0.968808\pi\)
\(660\) 0 0
\(661\) −7.38331 4.26275i −0.287177 0.165802i 0.349491 0.936940i \(-0.386355\pi\)
−0.636668 + 0.771138i \(0.719688\pi\)
\(662\) 0 0
\(663\) 0.627428 + 0.907112i 0.0243673 + 0.0352293i
\(664\) 0 0
\(665\) 2.52055 + 2.87918i 0.0977426 + 0.111650i
\(666\) 0 0
\(667\) 5.07494 + 8.79006i 0.196503 + 0.340352i
\(668\) 0 0
\(669\) 12.5407 26.4950i 0.484852 1.02436i
\(670\) 0 0
\(671\) −2.33377 −0.0900940
\(672\) 0 0
\(673\) 21.4714 0.827661 0.413831 0.910354i \(-0.364191\pi\)
0.413831 + 0.910354i \(0.364191\pi\)
\(674\) 0 0
\(675\) −4.99516 1.43120i −0.192264 0.0550870i
\(676\) 0 0
\(677\) 22.7980 + 39.4873i 0.876199 + 1.51762i 0.855480 + 0.517836i \(0.173262\pi\)
0.0207188 + 0.999785i \(0.493405\pi\)
\(678\) 0 0
\(679\) 11.8541 34.8216i 0.454919 1.33633i
\(680\) 0 0
\(681\) 28.7922 19.9149i 1.10332 0.763140i
\(682\) 0 0
\(683\) −3.12699 1.80537i −0.119651 0.0690805i 0.438980 0.898497i \(-0.355340\pi\)
−0.558631 + 0.829416i \(0.688673\pi\)
\(684\) 0 0
\(685\) 5.46044i 0.208633i
\(686\) 0 0
\(687\) −28.3463 + 2.31589i −1.08148 + 0.0883566i
\(688\) 0 0
\(689\) 1.66230 2.87920i 0.0633287 0.109689i
\(690\) 0 0
\(691\) 24.2995 14.0293i 0.924396 0.533700i 0.0393611 0.999225i \(-0.487468\pi\)
0.885035 + 0.465525i \(0.154134\pi\)
\(692\) 0 0
\(693\) 1.10175 6.61324i 0.0418520 0.251216i
\(694\) 0 0
\(695\) 15.0413 8.68408i 0.570548 0.329406i
\(696\) 0 0
\(697\) −2.47626 + 4.28901i −0.0937951 + 0.162458i
\(698\) 0 0
\(699\) 17.4240 1.42354i 0.659034 0.0538431i
\(700\) 0 0
\(701\) 37.7929i 1.42742i −0.700442 0.713710i \(-0.747014\pi\)
0.700442 0.713710i \(-0.252986\pi\)
\(702\) 0 0
\(703\) −2.90805 1.67896i −0.109679 0.0633232i
\(704\) 0 0
\(705\) −8.86941 + 6.13476i −0.334041 + 0.231048i
\(706\) 0 0
\(707\) −36.4830 + 31.9386i −1.37208 + 1.20118i
\(708\) 0 0
\(709\) −16.5765 28.7113i −0.622542 1.07827i −0.989011 0.147844i \(-0.952767\pi\)
0.366469 0.930430i \(-0.380567\pi\)
\(710\) 0 0
\(711\) 10.3968 27.5745i 0.389910 1.03413i
\(712\) 0 0
\(713\) 4.78948 0.179368
\(714\) 0 0
\(715\) 0.679591 0.0254153
\(716\) 0 0
\(717\) −5.83662 + 12.3311i −0.217973 + 0.460515i
\(718\) 0 0
\(719\) −17.6439 30.5601i −0.658005 1.13970i −0.981131 0.193342i \(-0.938067\pi\)
0.323127 0.946356i \(-0.395266\pi\)
\(720\) 0 0
\(721\) 0.680396 0.134724i 0.0253393 0.00501738i
\(722\) 0 0
\(723\) −23.9652 34.6479i −0.891274 1.28857i
\(724\) 0 0
\(725\) 3.07875 + 1.77752i 0.114342 + 0.0660154i
\(726\) 0 0
\(727\) 9.20999i 0.341579i 0.985307 + 0.170790i \(0.0546319\pi\)
−0.985307 + 0.170790i \(0.945368\pi\)
\(728\) 0 0
\(729\) −23.8342 + 12.6858i −0.882750 + 0.469843i
\(730\) 0 0
\(731\) 2.11887 3.66998i 0.0783691 0.135739i
\(732\) 0 0
\(733\) 21.6214 12.4831i 0.798605 0.461075i −0.0443782 0.999015i \(-0.514131\pi\)
0.842983 + 0.537940i \(0.180797\pi\)
\(734\) 0 0
\(735\) −6.59079 + 10.1765i −0.243105 + 0.375366i
\(736\) 0 0
\(737\) 4.99008 2.88102i 0.183812 0.106124i
\(738\) 0 0
\(739\) −22.2824 + 38.5943i −0.819671 + 1.41971i 0.0862530 + 0.996273i \(0.472511\pi\)
−0.905924 + 0.423439i \(0.860823\pi\)
\(740\) 0 0
\(741\) 0.164119 + 2.00881i 0.00602908 + 0.0737954i
\(742\) 0 0
\(743\) 27.1506i 0.996058i 0.867160 + 0.498029i \(0.165943\pi\)
−0.867160 + 0.498029i \(0.834057\pi\)
\(744\) 0 0
\(745\) −1.39720 0.806672i −0.0511894 0.0295542i
\(746\) 0 0
\(747\) 28.8782 + 35.2303i 1.05660 + 1.28901i
\(748\) 0 0
\(749\) 24.2503 4.80176i 0.886087 0.175453i
\(750\) 0 0
\(751\) −8.14524 14.1080i −0.297224 0.514807i 0.678276 0.734808i \(-0.262728\pi\)
−0.975500 + 0.220000i \(0.929394\pi\)
\(752\) 0 0
\(753\) −10.7813 5.10304i −0.392892 0.185965i
\(754\) 0 0
\(755\) −0.995546 −0.0362316
\(756\) 0 0
\(757\) −19.7700 −0.718553 −0.359276 0.933231i \(-0.616976\pi\)
−0.359276 + 0.933231i \(0.616976\pi\)
\(758\) 0 0
\(759\) 3.77545 + 1.78701i 0.137040 + 0.0648644i
\(760\) 0 0
\(761\) −12.2130 21.1535i −0.442721 0.766816i 0.555169 0.831737i \(-0.312653\pi\)
−0.997890 + 0.0649219i \(0.979320\pi\)
\(762\) 0 0
\(763\) −12.3620 + 10.8222i −0.447534 + 0.391788i
\(764\) 0 0
\(765\) 1.50525 + 1.83635i 0.0544225 + 0.0663934i
\(766\) 0 0
\(767\) 8.73096 + 5.04082i 0.315257 + 0.182013i
\(768\) 0 0
\(769\) 1.36859i 0.0493525i 0.999695 + 0.0246762i \(0.00785549\pi\)
−0.999695 + 0.0246762i \(0.992145\pi\)
\(770\) 0 0
\(771\) −2.62629 32.1455i −0.0945833 1.15769i
\(772\) 0 0
\(773\) −3.82678 + 6.62819i −0.137640 + 0.238399i −0.926603 0.376042i \(-0.877285\pi\)
0.788963 + 0.614441i \(0.210618\pi\)
\(774\) 0 0
\(775\) 1.45279 0.838768i 0.0521857 0.0301294i
\(776\) 0 0
\(777\) 2.59716 10.3175i 0.0931728 0.370139i
\(778\) 0 0
\(779\) −7.83757 + 4.52502i −0.280810 + 0.162126i
\(780\) 0 0
\(781\) 5.49262 9.51350i 0.196541 0.340420i
\(782\) 0 0
\(783\) 17.9229 4.47268i 0.640511 0.159841i
\(784\) 0 0
\(785\) 13.0450i 0.465594i
\(786\) 0 0
\(787\) −19.4261 11.2157i −0.692467 0.399796i 0.112068 0.993701i \(-0.464252\pi\)
−0.804536 + 0.593904i \(0.797586\pi\)
\(788\) 0 0
\(789\) 0.637583 + 0.921794i 0.0226986 + 0.0328167i
\(790\) 0 0
\(791\) 8.82000 25.9088i 0.313603 0.921212i
\(792\) 0 0
\(793\) 1.11147 + 1.92512i 0.0394694 + 0.0683631i
\(794\) 0 0
\(795\) 3.06199 6.46912i 0.108598 0.229436i
\(796\) 0 0
\(797\) −24.5266 −0.868777 −0.434389 0.900725i \(-0.643036\pi\)
−0.434389 + 0.900725i \(0.643036\pi\)
\(798\) 0 0
\(799\) 4.92802 0.174341
\(800\) 0 0
\(801\) 15.7423 41.7520i 0.556228 1.47523i
\(802\) 0 0
\(803\) 3.18331 + 5.51365i 0.112337 + 0.194573i
\(804\) 0 0
\(805\) −4.97563 5.68358i −0.175368 0.200320i
\(806\) 0 0
\(807\) 4.42030 3.05741i 0.155602 0.107626i
\(808\) 0 0
\(809\) −4.16717 2.40592i −0.146510 0.0845875i 0.424953 0.905215i \(-0.360291\pi\)
−0.571463 + 0.820628i \(0.693624\pi\)
\(810\) 0 0
\(811\) 38.9459i 1.36758i 0.729681 + 0.683788i \(0.239669\pi\)
−0.729681 + 0.683788i \(0.760331\pi\)
\(812\) 0 0
\(813\) −34.3435 + 2.80586i −1.20448 + 0.0984058i
\(814\) 0 0
\(815\) 7.00756 12.1375i 0.245464 0.425156i
\(816\) 0 0
\(817\) 6.70638 3.87193i 0.234626 0.135462i
\(818\) 0 0
\(819\) −5.97997 + 2.24076i −0.208957 + 0.0782985i
\(820\) 0 0
\(821\) −18.6948 + 10.7934i −0.652451 + 0.376693i −0.789395 0.613886i \(-0.789605\pi\)
0.136943 + 0.990579i \(0.456272\pi\)
\(822\) 0 0
\(823\) −0.529564 + 0.917232i −0.0184594 + 0.0319727i −0.875108 0.483928i \(-0.839209\pi\)
0.856648 + 0.515901i \(0.172543\pi\)
\(824\) 0 0
\(825\) 1.45816 0.119131i 0.0507666 0.00414762i
\(826\) 0 0
\(827\) 13.9948i 0.486648i 0.969945 + 0.243324i \(0.0782378\pi\)
−0.969945 + 0.243324i \(0.921762\pi\)
\(828\) 0 0
\(829\) 1.90847 + 1.10186i 0.0662840 + 0.0382691i 0.532776 0.846256i \(-0.321149\pi\)
−0.466492 + 0.884526i \(0.654482\pi\)
\(830\) 0 0
\(831\) 3.47471 2.40337i 0.120536 0.0833721i
\(832\) 0 0
\(833\) 5.12230 2.11130i 0.177477 0.0731520i
\(834\) 0 0
\(835\) −1.69882 2.94243i −0.0587899 0.101827i
\(836\) 0 0
\(837\) 2.40089 8.37957i 0.0829870 0.289640i
\(838\) 0 0
\(839\) 7.40205 0.255547 0.127774 0.991803i \(-0.459217\pi\)
0.127774 + 0.991803i \(0.459217\pi\)
\(840\) 0 0
\(841\) 16.3617 0.564197
\(842\) 0 0
\(843\) −11.5797 + 24.4646i −0.398826 + 0.842606i
\(844\) 0 0
\(845\) 6.17634 + 10.6977i 0.212473 + 0.368013i
\(846\) 0 0
\(847\) −5.28628 26.6973i −0.181639 0.917329i
\(848\) 0 0
\(849\) −12.2715 17.7416i −0.421155 0.608891i
\(850\) 0 0
\(851\) 5.74056 + 3.31432i 0.196784 + 0.113613i
\(852\) 0 0
\(853\) 18.3618i 0.628697i 0.949308 + 0.314349i \(0.101786\pi\)
−0.949308 + 0.314349i \(0.898214\pi\)
\(854\) 0 0
\(855\) 0.704283 + 4.28141i 0.0240860 + 0.146421i
\(856\) 0 0
\(857\) −8.99197 + 15.5745i −0.307160 + 0.532016i −0.977740 0.209821i \(-0.932712\pi\)
0.670580 + 0.741837i \(0.266045\pi\)
\(858\) 0 0
\(859\) 40.2008 23.2099i 1.37163 0.791913i 0.380499 0.924781i \(-0.375752\pi\)
0.991134 + 0.132869i \(0.0424189\pi\)
\(860\) 0 0
\(861\) −20.5818 19.9655i −0.701426 0.680421i
\(862\) 0 0
\(863\) 1.49152 0.861131i 0.0507720 0.0293132i −0.474399 0.880310i \(-0.657335\pi\)
0.525171 + 0.850997i \(0.324001\pi\)
\(864\) 0 0
\(865\) 2.49825 4.32709i 0.0849430 0.147126i
\(866\) 0 0
\(867\) 2.30930 + 28.2657i 0.0784280 + 0.959952i
\(868\) 0 0
\(869\) 8.29734i 0.281468i
\(870\) 0 0
\(871\) −4.75311 2.74421i −0.161053 0.0929839i
\(872\) 0 0
\(873\) 32.2571 26.4411i 1.09174 0.894895i
\(874\) 0 0
\(875\) −2.50460 0.852628i −0.0846710 0.0288241i
\(876\) 0 0
\(877\) 5.21047 + 9.02479i 0.175945 + 0.304746i 0.940488 0.339827i \(-0.110369\pi\)
−0.764543 + 0.644573i \(0.777035\pi\)
\(878\) 0 0
\(879\) 35.0763 + 16.6024i 1.18309 + 0.559986i
\(880\) 0 0
\(881\) 23.6170 0.795678 0.397839 0.917455i \(-0.369760\pi\)
0.397839 + 0.917455i \(0.369760\pi\)
\(882\) 0 0
\(883\) −36.0969 −1.21476 −0.607379 0.794412i \(-0.707779\pi\)
−0.607379 + 0.794412i \(0.707779\pi\)
\(884\) 0 0
\(885\) 19.6172 + 9.28527i 0.659423 + 0.312121i
\(886\) 0 0
\(887\) 9.04005 + 15.6578i 0.303535 + 0.525738i 0.976934 0.213541i \(-0.0684997\pi\)
−0.673399 + 0.739279i \(0.735166\pi\)
\(888\) 0 0
\(889\) 16.4220 + 5.59045i 0.550776 + 0.187498i
\(890\) 0 0
\(891\) 5.01909 5.70964i 0.168146 0.191280i
\(892\) 0 0
\(893\) 7.79878 + 4.50263i 0.260976 + 0.150675i
\(894\) 0 0
\(895\) 15.7621i 0.526870i
\(896\) 0 0
\(897\) −0.323976 3.96544i −0.0108173 0.132402i
\(898\) 0 0
\(899\) −2.98185 + 5.16472i −0.0994503 + 0.172253i
\(900\) 0 0
\(901\) −2.83238 + 1.63528i −0.0943604 + 0.0544790i
\(902\) 0 0
\(903\) 17.6112 + 17.0839i 0.586065 + 0.568515i
\(904\) 0 0
\(905\) 14.1355 8.16114i 0.469880 0.271285i
\(906\) 0 0
\(907\) 29.2080 50.5897i 0.969836 1.67980i 0.273816 0.961782i \(-0.411714\pi\)
0.696020 0.718023i \(-0.254953\pi\)
\(908\) 0 0
\(909\) −54.2511 + 8.92419i −1.79940 + 0.295997i
\(910\) 0 0
\(911\) 45.4686i 1.50644i −0.657768 0.753220i \(-0.728499\pi\)
0.657768 0.753220i \(-0.271501\pi\)
\(912\) 0 0
\(913\) −11.1076 6.41297i −0.367608 0.212238i
\(914\) 0 0
\(915\) 2.72229 + 3.93578i 0.0899960 + 0.130113i
\(916\) 0 0
\(917\) 10.2385 + 51.7075i 0.338106 + 1.70753i
\(918\) 0 0
\(919\) 3.95167 + 6.84449i 0.130353 + 0.225779i 0.923813 0.382844i \(-0.125055\pi\)
−0.793459 + 0.608623i \(0.791722\pi\)
\(920\) 0 0
\(921\) −6.07286 + 12.8302i −0.200108 + 0.422771i
\(922\) 0 0
\(923\) −10.4636 −0.344413
\(924\) 0 0
\(925\) 2.32171 0.0763372
\(926\) 0 0
\(927\) 0.735904 + 0.277468i 0.0241703 + 0.00911324i
\(928\) 0 0
\(929\) −22.6921 39.3038i −0.744503 1.28952i −0.950427 0.310949i \(-0.899353\pi\)
0.205924 0.978568i \(-0.433980\pi\)
\(930\) 0 0
\(931\) 10.0353 + 1.33894i 0.328893 + 0.0438819i
\(932\) 0 0
\(933\) −24.7010 + 17.0851i −0.808675 + 0.559341i
\(934\) 0 0
\(935\) −0.578974 0.334271i −0.0189345 0.0109318i
\(936\) 0 0
\(937\) 27.2557i 0.890404i 0.895430 + 0.445202i \(0.146868\pi\)
−0.895430 + 0.445202i \(0.853132\pi\)
\(938\) 0 0
\(939\) −3.93849 + 0.321775i −0.128528 + 0.0105007i
\(940\) 0 0
\(941\) 8.14655 14.1102i 0.265570 0.459981i −0.702143 0.712036i \(-0.747773\pi\)
0.967713 + 0.252056i \(0.0811066\pi\)
\(942\) 0 0
\(943\) 15.4716 8.93252i 0.503824 0.290883i
\(944\) 0 0
\(945\) −12.4381 + 5.85615i −0.404610 + 0.190501i
\(946\) 0 0
\(947\) 19.8661 11.4697i 0.645563 0.372716i −0.141191 0.989982i \(-0.545093\pi\)
0.786754 + 0.617266i \(0.211760\pi\)
\(948\) 0 0
\(949\) 3.03214 5.25182i 0.0984274 0.170481i
\(950\) 0 0
\(951\) 48.0495 3.92564i 1.55811 0.127298i
\(952\) 0 0
\(953\) 38.6230i 1.25112i 0.780176 + 0.625560i \(0.215130\pi\)
−0.780176 + 0.625560i \(0.784870\pi\)
\(954\) 0 0
\(955\) −20.2436 11.6876i −0.655067 0.378203i
\(956\) 0 0
\(957\) −4.27755 + 2.95868i −0.138274 + 0.0956406i
\(958\) 0 0
\(959\) −9.51609 10.8701i −0.307291 0.351013i
\(960\) 0 0
\(961\) −14.0929 24.4097i −0.454611 0.787409i
\(962\) 0 0
\(963\) 26.2287 + 9.88936i 0.845208 + 0.318680i
\(964\) 0 0
\(965\) −6.50484 −0.209398
\(966\) 0 0
\(967\) −17.8716 −0.574711 −0.287355 0.957824i \(-0.592776\pi\)
−0.287355 + 0.957824i \(0.592776\pi\)
\(968\) 0 0
\(969\) 0.848253 1.79212i 0.0272498 0.0575712i
\(970\) 0 0
\(971\) 7.16636 + 12.4125i 0.229979 + 0.398336i 0.957802 0.287430i \(-0.0928008\pi\)
−0.727822 + 0.685766i \(0.759467\pi\)
\(972\) 0 0
\(973\) 14.8086 43.5003i 0.474741 1.39456i
\(974\) 0 0
\(975\) −0.792728 1.14610i −0.0253876 0.0367045i
\(976\) 0 0
\(977\) −45.9360 26.5212i −1.46962 0.848487i −0.470203 0.882558i \(-0.655819\pi\)
−0.999419 + 0.0340716i \(0.989153\pi\)
\(978\) 0 0
\(979\) 12.5634i 0.401529i
\(980\) 0 0
\(981\) −18.3826 + 3.02389i −0.586910 + 0.0965454i
\(982\) 0 0
\(983\) 1.12377 1.94642i 0.0358426 0.0620813i −0.847548 0.530719i \(-0.821922\pi\)
0.883390 + 0.468638i \(0.155255\pi\)
\(984\) 0 0
\(985\) 9.92782 5.73183i 0.316327 0.182631i
\(986\) 0 0
\(987\) −6.96506 + 27.6695i −0.221700 + 0.880729i
\(988\) 0 0
\(989\) −13.2386 + 7.64329i −0.420962 + 0.243043i
\(990\) 0 0
\(991\) −11.5434 + 19.9938i −0.366689 + 0.635125i −0.989046 0.147609i \(-0.952842\pi\)
0.622356 + 0.782734i \(0.286176\pi\)
\(992\) 0 0
\(993\) 3.69347 + 45.2077i 0.117209 + 1.43462i
\(994\) 0 0
\(995\) 20.5152i 0.650376i
\(996\) 0 0
\(997\) −2.56826 1.48279i −0.0813377 0.0469603i 0.458780 0.888550i \(-0.348287\pi\)
−0.540117 + 0.841590i \(0.681620\pi\)
\(998\) 0 0
\(999\) 8.67630 8.38214i 0.274506 0.265199i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 840.2.cp.b.521.14 yes 32
3.2 odd 2 840.2.cp.a.521.15 32
7.5 odd 6 840.2.cp.a.761.15 yes 32
21.5 even 6 inner 840.2.cp.b.761.14 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
840.2.cp.a.521.15 32 3.2 odd 2
840.2.cp.a.761.15 yes 32 7.5 odd 6
840.2.cp.b.521.14 yes 32 1.1 even 1 trivial
840.2.cp.b.761.14 yes 32 21.5 even 6 inner