Properties

Label 840.2.cl
Level $840$
Weight $2$
Character orbit 840.cl
Rep. character $\chi_{840}(451,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $128$
Newform subspaces $2$
Sturm bound $384$
Trace bound $4$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 840.cl (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 56 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 2 \)
Sturm bound: \(384\)
Trace bound: \(4\)
Distinguishing \(T_p\): \(13\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(840, [\chi])\).

Total New Old
Modular forms 400 128 272
Cusp forms 368 128 240
Eisenstein series 32 0 32

Trace form

\( 128 q + 4 q^{2} + 4 q^{4} - 8 q^{8} + 64 q^{9} - 16 q^{11} + 16 q^{14} - 4 q^{16} - 4 q^{18} + 40 q^{22} + 36 q^{24} - 64 q^{25} + 60 q^{26} + 8 q^{28} + 24 q^{32} + 8 q^{36} + 12 q^{42} + 32 q^{43} - 16 q^{44}+ \cdots - 32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(840, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
840.2.cl.a 840.cl 56.m $64$ $6.707$ None 840.2.cl.a \(2\) \(0\) \(32\) \(0\) $\mathrm{SU}(2)[C_{6}]$
840.2.cl.b 840.cl 56.m $64$ $6.707$ None 840.2.cl.a \(2\) \(0\) \(-32\) \(0\) $\mathrm{SU}(2)[C_{6}]$

Decomposition of \(S_{2}^{\mathrm{old}}(840, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(840, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(56, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(168, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(280, [\chi])\)\(^{\oplus 2}\)