Properties

Label 840.2.br
Level $840$
Weight $2$
Character orbit 840.br
Rep. character $\chi_{840}(43,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $144$
Newform subspaces $2$
Sturm bound $384$
Trace bound $8$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 840.br (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 40 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 2 \)
Sturm bound: \(384\)
Trace bound: \(8\)
Distinguishing \(T_p\): \(13\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(840, [\chi])\).

Total New Old
Modular forms 400 144 256
Cusp forms 368 144 224
Eisenstein series 32 0 32

Trace form

\( 144 q - 8 q^{6} - 16 q^{10} + 16 q^{12} + 8 q^{16} - 16 q^{17} + 40 q^{20} + 56 q^{22} + 16 q^{25} - 16 q^{30} - 40 q^{32} - 8 q^{36} - 56 q^{38} + 24 q^{40} + 64 q^{43} - 48 q^{46} - 40 q^{50} + 32 q^{51}+ \cdots + 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(840, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
840.2.br.a 840.br 40.k $72$ $6.707$ None 840.2.br.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$
840.2.br.b 840.br 40.k $72$ $6.707$ None 840.2.br.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$

Decomposition of \(S_{2}^{\mathrm{old}}(840, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(840, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(40, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(120, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(280, [\chi])\)\(^{\oplus 2}\)