Properties

Label 840.2.bf
Level $840$
Weight $2$
Character orbit 840.bf
Rep. character $\chi_{840}(461,\cdot)$
Character field $\Q$
Dimension $128$
Newform subspaces $2$
Sturm bound $384$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 840.bf (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 168 \)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(384\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(11\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(840, [\chi])\).

Total New Old
Modular forms 200 128 72
Cusp forms 184 128 56
Eisenstein series 16 0 16

Trace form

\( 128 q - 16 q^{16} - 20 q^{18} + 40 q^{22} - 128 q^{25} - 12 q^{28} + 40 q^{36} - 12 q^{42} - 16 q^{46} - 16 q^{49} + 16 q^{58} - 28 q^{60} + 40 q^{63} + 48 q^{64} + 12 q^{70} - 16 q^{72} - 68 q^{78} - 64 q^{79}+ \cdots - 64 q^{88}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(840, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
840.2.bf.a 840.bf 168.i $8$ $6.707$ \(\Q(\zeta_{24})\) None 840.2.bf.a \(0\) \(0\) \(0\) \(-8\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta_{2} q^{2}+(-\beta_{6}+\beta_1)q^{3}-2 q^{4}+\cdots\)
840.2.bf.b 840.bf 168.i $120$ $6.707$ None 840.2.bf.b \(0\) \(0\) \(0\) \(8\) $\mathrm{SU}(2)[C_{2}]$

Decomposition of \(S_{2}^{\mathrm{old}}(840, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(840, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(168, [\chi])\)\(^{\oplus 2}\)