Properties

Label 833.2.u
Level $833$
Weight $2$
Character orbit 833.u
Rep. character $\chi_{833}(86,\cdot)$
Character field $\Q(\zeta_{21})$
Dimension $888$
Newform subspaces $2$
Sturm bound $168$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 833 = 7^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 833.u (of order \(21\) and degree \(12\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 49 \)
Character field: \(\Q(\zeta_{21})\)
Newform subspaces: \( 2 \)
Sturm bound: \(168\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(833, [\chi])\).

Total New Old
Modular forms 1032 888 144
Cusp forms 984 888 96
Eisenstein series 48 0 48

Trace form

\( 888 q + 2 q^{3} + 72 q^{4} + 4 q^{5} - 28 q^{6} + 2 q^{7} + 12 q^{8} + 40 q^{9} - 6 q^{10} - 4 q^{11} + 4 q^{12} + 16 q^{13} + 2 q^{14} - 20 q^{15} + 68 q^{16} + 4 q^{17} - 4 q^{18} - 6 q^{19} - 48 q^{20}+ \cdots + 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(833, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
833.2.u.a 833.u 49.g $420$ $6.652$ None 833.2.u.a \(-2\) \(1\) \(2\) \(0\) $\mathrm{SU}(2)[C_{21}]$
833.2.u.b 833.u 49.g $468$ $6.652$ None 833.2.u.b \(2\) \(1\) \(2\) \(2\) $\mathrm{SU}(2)[C_{21}]$

Decomposition of \(S_{2}^{\mathrm{old}}(833, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(833, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(49, [\chi])\)\(^{\oplus 2}\)