Properties

Label 833.2.o
Level $833$
Weight $2$
Character orbit 833.o
Rep. character $\chi_{833}(30,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $224$
Newform subspaces $8$
Sturm bound $168$
Trace bound $4$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 833 = 7^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 833.o (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 119 \)
Character field: \(\Q(\zeta_{12})\)
Newform subspaces: \( 8 \)
Sturm bound: \(168\)
Trace bound: \(4\)
Distinguishing \(T_p\): \(2\), \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(833, [\chi])\).

Total New Old
Modular forms 368 256 112
Cusp forms 304 224 80
Eisenstein series 64 32 32

Trace form

\( 224 q + 2 q^{3} + 108 q^{4} + 4 q^{5} + 16 q^{6} + 10 q^{10} + 12 q^{11} - 24 q^{12} - 92 q^{16} + 6 q^{17} - 20 q^{18} + 32 q^{20} - 72 q^{22} - 20 q^{24} - 16 q^{27} - 16 q^{29} + 68 q^{30} - 2 q^{31}+ \cdots - 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(833, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
833.2.o.a 833.o 119.n $4$ $6.652$ \(\Q(\zeta_{12})\) None 833.2.g.a \(0\) \(-4\) \(-2\) \(0\) $\mathrm{SU}(2)[C_{12}]$ \(q-\zeta_{12}q^{2}+(2\zeta_{12}-2\zeta_{12}^{2}-2\zeta_{12}^{3})q^{3}+\cdots\)
833.2.o.b 833.o 119.n $4$ $6.652$ \(\Q(\zeta_{12})\) None 833.2.g.a \(0\) \(4\) \(2\) \(0\) $\mathrm{SU}(2)[C_{12}]$ \(q-\zeta_{12}q^{2}+(-2\zeta_{12}+2\zeta_{12}^{2}+2\zeta_{12}^{3})q^{3}+\cdots\)
833.2.o.c 833.o 119.n $8$ $6.652$ 8.0.303595776.1 None 119.2.n.a \(0\) \(2\) \(-4\) \(0\) $\mathrm{SU}(2)[C_{12}]$ \(q+\beta _{2}q^{2}-\beta _{1}q^{3}+\beta _{4}q^{4}+(-1+\beta _{2}+\cdots)q^{5}+\cdots\)
833.2.o.d 833.o 119.n $32$ $6.652$ None 119.2.n.b \(0\) \(0\) \(8\) \(0\) $\mathrm{SU}(2)[C_{12}]$
833.2.o.e 833.o 119.n $32$ $6.652$ None 833.2.g.e \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{12}]$
833.2.o.f 833.o 119.n $40$ $6.652$ None 119.2.g.a \(0\) \(-4\) \(-8\) \(0\) $\mathrm{SU}(2)[C_{12}]$
833.2.o.g 833.o 119.n $40$ $6.652$ None 119.2.g.a \(0\) \(4\) \(8\) \(0\) $\mathrm{SU}(2)[C_{12}]$
833.2.o.h 833.o 119.n $64$ $6.652$ None 833.2.g.i \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{12}]$

Decomposition of \(S_{2}^{\mathrm{old}}(833, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(833, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(119, [\chi])\)\(^{\oplus 2}\)